

# FLOOD RISK ASSESSMENT

# LAND BEHIND BROADFIELDS,

WIVENHOE, ESSEX

GRID REF: 604550E,223229N

Prepared for

TAYLOR WIMPEY EAST LONDON

## **MARCH 2021**

REFERENCE: ST2981/FRA-2009

**REVISION 2** 



This report has been prepared by Stomor Ltd. based upon information obtained from others. Stomor Ltd cannot be held responsible for inaccuracies in this information.

This report has been prepared for the Client for their sole and specific use. No professional liability or warranty shall be extended to other parties in connection with this report without the explicit written agreement of Stomor Ltd and payment of the appropriate fee.

Drawings contained in this report are based upon information available at the time of production and serve to assess the likely flooding and flood risk implications arising from delivery of the proposed development. The information produced by Stomor Ltd for this report should not be used as detailed design for construction purposes.

Should the Client wish to pass copies of this report to others for information, the entire report should be copied.

| Revision | Author | Checked by | Issue Date |
|----------|--------|------------|------------|
| 0        | JN     | SJB        | 02/09/2020 |
| 1        | JN     | BDR        | 26/02/2021 |
| 2        | SJB    | BDR        | 26/03/2021 |

Ref: ST2981/FRA-2009-Rev 2

## **CONTENTS**

| 1. | Intr | oduction                                                      | 1  |
|----|------|---------------------------------------------------------------|----|
|    | 1.2. | Policy Context                                                | 1  |
|    | 1.3. | Flood Risk Vulnerability and the NPPF Sequential Test         | 2  |
| 2. | Site | Location & Surrounding Area                                   | 4  |
| 3. | Site | Background                                                    | 5  |
| 4. | Exis | sting Drainage                                                | 6  |
| 4  | 4.1. | Surface Water Drainage                                        | 6  |
| 4  | 4.2. | Foul Drainage                                                 | 6  |
| 5. | Pro  | posed Development                                             | 7  |
| 6. | Pro  | posed Site Drainage                                           | 8  |
| (  | 5.1. | General                                                       | 8  |
| (  | 5.2. | Surface Water Drainage                                        | 8  |
| (  | 5.3. | Foul Drainage                                                 | 11 |
| (  | 5.4. | Detailed Design and Approvals                                 | 11 |
| (  | 6.5. | Maintenance of Drainage Features                              | 12 |
| 7. | Pot  | ential Sources of Flooding                                    | 14 |
| -  | 7.1. | Flooding from Rivers or Sea                                   | 14 |
| -  | 7.2. | Flooding from Land (Surface Water)                            | 14 |
| -  | 7.3. | Flooding from Groundwater                                     | 15 |
| -  | 7.4. | Flooding from Sewers                                          | 15 |
| -  | 7.5. | Flooding from Reservoirs, Canals and Other Artificial Sources | 16 |
| 8  | Sur  | mmary and Recommendations                                     | 17 |

### **APPENDICES**

- A Site Location Plan
- B EA Groundwater Source Protection Zone Map
- C AWS Sewer Records
- D Greenfield Runoff Rate Calculations
- E AWS Pre-Planning Assessment
- F Indicative Drainage Strategy
- G Micro Drainage Output Files
- H EA Indicative Surface Water Flood Map
- Groundwater Flooding Susceptibility Map
- J AWS Sewer Flooding History Records

Ref: ST2981/FRA-2009-Rev 2

### 1. Introduction

- 1.1.1. Stomor Ltd have been commissioned by Taylor Wimpey East London to prepare a Flood Risk Assessment (FRA) associated with the construction of residential development (Use Class C3), access, landscaping, public open space, and associated infrastructure works.
- 1.1.2. The site is located in the north of Wivenhoe, on the eastern side of Richards Avenue. A Site Location Plan is provided in **Appendix A**.

### 1.2. Policy Context

- 1.2.1. The FRA has been prepared in accordance with relevant national, regional and local planning policy and guidance on flooding as follows:
  - The National Planning Policy Framework (NPPF) by Department for Communities and Local Government (DCLG), and the accompanying National Planning Practice Guidance (NPPG).
  - Department for Environment, Food and Rural Affairs (DEFRA) and The Environment Agency (EA) published Guidance for Planning Applications: Assessing Flood Risk (March 2014).
  - The EA Flood Risk Standing Advice (FRSA) version 3.1 (April 2012).
  - The EA's Approach to Groundwater Protection (March 2017).
  - The Colchester Borough Council (CBC) Local Plan 2010, policies: DP1 Design and Amenity and DP20: Flood Risk Management of Surface Water Drainage.
  - CBC Emerging Local Plan, 2017- 2033.
  - CBC Local Plan 2013-2033 Section 1 North Essex Authorities' Shared Strategic Section 1 Plan (Adopted February 2021).
  - Wivenhoe Neighbourhood Plan (March 2019).
- 1.2.2. Furthermore, the FRA follows the methodology prescribed in Construction Industry Research and Information Association (CIRIA) document C624: Development and Flood Risk (2004), Guidance for the Construction Industry.

### 1.3. Flood Risk Vulnerability and the NPPF Sequential Test

1.3.1. The Indicative Floodplain Map obtained from the EA website is provided in **Figure 1.1**. This shows that the site lies within Flood Zone 1.




Figure 1.1 - Environment Agency Indicative Floodplain Map

1.3.2. The difference between Flood Zones 1, 2 and 3 are described in the table below:

| Zone 1                                           | Land assessed as having a less than 1 in 1000 annual probability of river or    |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| Low Probability sea flooding in any year (<0.1%) |                                                                                 |  |  |  |
| Zone 2                                           | Land assessed as having between a 1 in 100 and 1 in 1000 annual                 |  |  |  |
| Medium                                           | probability of river flooding (1% - 0.1%) or between a 1 in 200 and 1 in 1000   |  |  |  |
| Probability                                      | annual probability of sea flooding (0.55% – 0.1%) in any year.                  |  |  |  |
| Zone 3a                                          | Land assessed as having a 1 in 100 or greater annual probability of river       |  |  |  |
|                                                  | flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the |  |  |  |
| High Probability                                 | sea (>0.5%) in any year.                                                        |  |  |  |
| Zone 3b                                          | Land where water has to flow or be stored in times of flood. (Land which        |  |  |  |
| The Functional                                   | would flood with an annual probability of 1 in 20 (5%) or greater in any year   |  |  |  |
| Floodplain                                       | or is designed to flood in an extreme (0.1%) flood or at another probability to |  |  |  |
|                                                  | be agreed between the LPA and the EA including water conveyance routes).        |  |  |  |

1.3.3. The Flood Risk and Coastal Change Category (ID 7) of the NPPG and associated documents identifies that a Flood Risk Assessment is required for developments of more than 1ha within Flood Zone 1.

- 1.3.4. The Flood Risk and Coastal Change Category of the NPPG and associated documents identify that site-specific flood risk assessments should identify and assess the risks of all forms of flooding to and from the development and demonstrate how these flood risks will be managed so that the development remains safe throughout its lifetime, taking climate change into account.
- 1.3.5. The residential dwellings proposed would have a NPPF flood risk vulnerability classification of 'More Vulnerable'. The proposed development area of the site will be situated wholly within Flood Zone 1. NPPG identifies that all uses of land are appropriate within this Flood Zone.

### 2. Site Location & Surrounding Area

- 2.1.1. The site covers an area of 11.58ha and is currently greenfield arable land. It is bounded by properties fronting Alexandra Drive, Richard Avenue and Henrietta Close to the west, sports fields to the north and south, and agricultural land with to the east.
- 2.1.2. Existing ground levels vary within the site. The land generally falls towards the south, with site levels ranging from approximately 32.68m AOD near the north western corner and 29.76m AOD near south eastern corner.
- 2.1.3. The nearest CBC designated Ordinary Watercourse is located in a nearby field approximately 200m to the south of the site. This watercourse runs southwards through the east of Wivenhoe to connect to the River Colne.
- 2.1.4. The nearest EA designated Main River is located approximately 900m east of the site. This watercourse is named Sixpenny Brook and flows southwards, joining the River Colne via Alresford Creek.
- 2.1.5. The site is located within a Groundwater Source Protection Zone 3 (Total Catchment).
  A copy of the EA Groundwater Source Protection Zone map is provided in **Appendix B**.

### 3. Site Background

- 3.1.1. Level 1 Strategic Flood Risk Assessments (SFRA) for the area were prepared by AECOM in August 2016. The SFRA is used as a desk based study to map all forms of flood risk to provide an evidence basis to locate new development primarily within low risk areas. The information allows the planning authority to identify the level of detail required for site-specific Flood Risk Assessments.
- 3.1.2. Inspection of the British Geological Survey (BGS) website identifies that the underlying ground conditions of the majority of the site comprise the Kesgrave catchment subgroup sand and gravel underlain by the Thames group bedrock. In the north of the site, the BGS information indicates that the ground conditions comprise cover sand, again underlain by the Thames group bedrock.
- 3.1.3. Geotechnical investigations carried out by REC Ltd on behalf of Taylor Wimpey have confirmed that ground conditions were generally consistent with the geological records. Groundwater was encountered at depths between 0.35mbgl and 2.5mbgl.

### 4. Existing Drainage

### 4.1. Surface Water Drainage

- 4.1.1. Surface water runoff from the site currently drains either to ground or overland to land drainage ditches which are currently in place along the field boundaries. The topographical survey shows the ditch along the eastern boundary running southwards, with no confirmed connection downstream. The ditch on the western boundary is also shown running southwards where it appears to connect to the public surface water sewer to the south.
- 4.1.2. Anglian Water Services (AWS) sewer records have been obtained which identify a 150mm diameter public surface water sewer running southwards, adjacent to the eastern site boundary. This sewer connects to a 610mm diameter public surface water sewer to the south east of the site. From here, the 610mm diameter sewer runs in a south eastwards direction. A copy of the AWS sewer records are provided in Appendix C.
- 4.1.3. Greenfield runoff rates have been calculated based upon the IH124 Method, using a contributing developable area of 4.9ha to be positively drained. A copy of the calculation sheet is provided in **Appendix D**, which gives flow rates as follows:

| Greenfield Runoff (I/s) |      |       |  |  |
|-------------------------|------|-------|--|--|
| 1 in 1 year             | Q1   | 15.23 |  |  |
| 1 in 30 years           | Q30  | 41.21 |  |  |
| 1 in 100 years          | Q100 | 57.15 |  |  |

### 4.2. Foul Drainage

- 4.2.1. There currently is no foul water drainage infrastructure on the site.
- 4.2.2. AWS sewer records identify public foul water sewers to the west of the site, running along Richard Avenue and Henrietta Close. These sewers connect to a foul water pumping station at the southern end of Henrietta Close.

### 5. Proposed Development

- 5.1.1. Current development proposals comprise the construction of residential development (Use Class C3), access, landscaping, public open space, and associated infrastructure works.
- 5.1.2. Vehicular access to the site will be taken from the west, from Richards Avenue. Additional pedestrian/cycle access will be available from the north of the site via a pedestrian/cycle path.
- 5.1.3. The proposed residential dwellings would have a NPPF flood risk vulnerability classification of 'More Vulnerable'. The site is located within Flood Zone 1, where all types of development are appropriate.

### 6. Proposed Site Drainage

### 6.1. General

6.1.1. Environment Agency (EA) Flood Risk Assessment (FRA) Guidance Note 1 - Development within a Critical Drainage area or greater than 1 hectare (ha) in Flood Zone 1 (Dated April 2012) states that the applicant should submit, "Proposals for surface water management that aims to not increase, and where practicable reduce the rate of runoff from the site as a result of the development".

## 6.2. Surface Water Drainage

- 6.2.1. The site is currently undeveloped and as such the proposed development will significantly increase the impermeable area of the site. Based upon the proposed layout, the residential development would be expected to generate an impermeable area of approximately 3.4ha, which includes an allowance for urban creep.
- 6.2.2. In accordance with EA Guidance, the order of consideration for the disposal of surface water runoff from a development should be as follows; infiltration methods, watercourses then public sewer network.
- 6.2.3. With regard to infiltration methods, geotechnical investigations on the site identifies that there is a high underlying groundwater table, which would make infiltration methods infeasible for the discharge of surface water.
- 6.2.4. The nearest designated watercourse to the site is an Ordinary Watercourse located approximately 200m to the south. However, a connection to this watercourse would require crossing third party land and an existing public surface water sewer.
- 6.2.5. There are existing drainage ditches on the eastern and western boundaries of the site. However, a gravity connection to these ditches does not appear to be feasible. In addition, it has not been ascertained whether these ditches have an outfall at their southern end due to existing siltation and overgrown vegetation. Therefore, for the purposes of this assessment, it is considered that a connection to a nearby watercourse is not suitable for the development.
- 6.2.6. It is therefore considered that a connection to the public surface water sewer to the south of the site is the most suitable outfall arrangement for the development. A preplanning assessment enquiry was sent to AWS to confirm whether a connection to the public surface water sewer to the south of the site from the development would be

acceptable. In their response dated 4<sup>th</sup> June 2020, AWS confirmed that a connection to the public surface water sewer to the south of the site would be acceptable at a maximum discharge rate of 15l/s. The AWS pre-planning assessment response is provided in **Appendix E**.

- 6.2.7. A proposed drainage strategy for the site is provided in **Appendix F**, Drawing ST-2981-01. The strategy demonstrates a proposed layout of SuDS to provide sufficient source control and storage to reflect greenfield runoff rates and to avoid flooding within the site during all storms up to and including the 1 in 100 year storm event plus 40% allowance for climate change.
- 6.2.8. The proposed drainage strategy has been modelled using Micro Drainage. Copies of Micro Drainage output files for the development are provided in **Appendix G**, demonstrating that the proposed SuDS features provide sufficient storage to avoid flooding during the 1 in 100 year storm event plus 40% allowance for climate change.
- 6.2.9. The indicative drainage strategy incorporates SuDS features which will need to have clear, enforceable maintenance regimes in place so that they provide effective flood protection and water treatment for the long term.
- 6.2.10. The CIRIA SuDS Manual C753 promotes the use of the Simple Index Approach as a method of determining water quality risk management and is generally regarded as the accepted method within the industry.
- 6.2.11. Table 26.2 of the SuDS Manual gives pollution hazard indices for different land use classifications. A summarised version of this table is reproduced below:

| Land use                                                                                                                          | Pollution<br>hazard<br>level | Total<br>suspended<br>solids | Metals | Hydro-<br>carbons |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------|-------------------|
| Residential roofs                                                                                                                 | Very low                     | 0.2                          | 0.2    | 0.05              |
| Residential driveways, low traffic roads and non-residential car parking with infrequent change (i.e. <300 traffic movements/day) | Low                          | 0.5                          | 0.4    | 0.4               |
| All roads except low traffic roads and trunk roads/motorways (i.e. >300 traffic movements/day)                                    | Medium                       | 0.7                          | 0.6    | 0.7               |

Ref: ST2981/FRA-2009-Rev 2

6.2.12. Table 26.3 of the SuDS Manual provides typical treatments levels from various different SuDS features discharging to surface waters. The following SuDS features will be included as part of the surface water drainage proposals for the development:

|                        | Mitigation Indices |        |              |  |  |
|------------------------|--------------------|--------|--------------|--|--|
| Type Of SuDS Component | TSS                | Metals | Hydrocarbons |  |  |
| Swale                  | 0.5                | 0.6    | 0.6          |  |  |
| Permeable Pavement     | 0.7                | 0.6    | 0.7          |  |  |
| Filter Drain           | 0.4                | 0.4    | 0.4          |  |  |
| Detention Basin        | 0.5                | 0.5    | 0.6          |  |  |
| Wetland                | 0.8                | 0.8    | 0.8          |  |  |

6.2.13. To deliver adequate treatment, the selected SuDS components should have a total mitigation indices that equals or is greater than the pollution hazard index. Where a single SuDS component is insufficient, additional components in a series would be required, where:

### Total SuDS mitigation index = mitigation index<sub>1</sub> + 0.5 (mitigation index<sub>n</sub>)

6.2.14. Surface water runoff from all aspects of the development will, as a minimum, pass through a wetland. Therefore, from the above tables it can be seen that the SuDS proposed on the development would provide an adequate level of water treatment for the potential pollution hazards generated by the land uses.

### 6.3. Foul Drainage

- 6.3.1. A proposed development of up to 120No. residential units would be expected to generate a peak foul flow rate of approximately 5.55l/s, based upon 4000 litres/unit dwelling/day, in accordance with Sewers for Adoption.
- 6.3.2. A proposed strategy for the discharge of foul water flows from the development has been prepared and is shown in principle on Drawing ST-2981-01 attached in **Appendix F**.

## 6.4. <u>Detailed Design and Approvals</u>

- 6.4.1 The proposed drainage strategy is subject to approval by the EA, LLFA and ECC; approval from AWS will be required where connections to the public sewer network are proposed.
- 6.4.2 Proposed drainage systems will need to be modelled in Micro Drainage to confirm required pipe sizes and storage volumes.
- 6.4.3 Overland flow routes have been shown on the drainage strategy through the development, to identify proposed flow paths for surface runoff during extreme storm events. Final external levels will be designed to prevent overland flow routes from entering buildings.

### 6.5. <u>Maintenance of Drainage Features</u>

- 6.5.1. The design process should consider the maintenance of the components (access, waste management etc.) including any corrective maintenance to repair defects or improve performance of SuDS. Inlets, outlets, control structures or other below ground features should be as shallow as reasonably possible to allow easy access for maintenance and to reduce safety risks, while ensuring that sufficient depth is maintained for structural stability.
- 6.5.2. A SuDS Management Plan must be provided at detailed design stage which will identify the following:
  - The function of SuDS;
  - How and why it works on the site;
  - Impacts on amenity and wildlife, indicating how they can be enhanced;
  - Health and safety issues;
  - Long-term expectations for the SuDS on site.

6.5.3. Usually SuDS components are on or near the surface and most can be managed using landscape maintenance techniques. Typical inspection and maintenance requirements for surface SuDS features are identified below:

| Activity                       | Indicative frequency                                              | Typical tasks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Routine/regular<br>maintenance | Monthly (for<br>normal care of<br>SuDS)                           | <ul> <li>litter picking</li> <li>grass cutting (cuttings to compost, wildlife piles or removed from site) Height and frequency dependent upon amenity of grass area.</li> <li>inspection of inlets, outlets and control structures.</li> </ul>                                                                                                                                                                                                                                                                                                                                |
| Occasional maintenance         | Annually<br>(dependent on<br>the design)                          | <ul> <li>silt control around components</li> <li>vegetation management around components</li> <li>suction sweeping of permeable paving in autumn after leaf fall</li> <li>silt and debris removal from inlets, outlets, gratings, catchpits, control chambers, soakaways and cellular storage.</li> <li>trim wet swale or pond edges in September to October or 3-year rotation for wildlife value</li> <li>wetland vegetation to be cut to 30% height annually and to 100mm on a 3 year rotation</li> <li>remove overhanging trees or growth within SuDS features</li> </ul> |
| Remedial<br>maintenance        | As required (tasks to repair problems due to damage or vandalism) | <ul> <li>inlet/outlet repair</li> <li>erosion repairs</li> <li>reinstatement of edgings</li> <li>reinstatement following pollution</li> <li>removal of silt build up.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                              |

- 6.5.4. For below-ground SuDS such as permeable paving, the manufacturer or designer should provide maintenance advice. This should include routine and long-term actions that can be incorporated into the SuDS Management Plan.
- 6.5.5. Funding for the maintenance of SuDS systems on the site should be resolved at the start of the development process to ensure that the management company employed to oversee the development, have sufficient resources to maintain the systems in the long-term.

### 7. Potential Sources of Flooding

### 7.1. Flooding from Rivers or Sea

- 7.1.1. Inspection of the topographical survey identified that existing ground levels generally fall towards the south. Levels on site are generally between 32.20m AOD, and 29.40m AOD.
- 7.1.2. The EA Indicative Floodplain Map, shown in Figure 1.1, identifies that the sites lies wholly within Flood Zone 1.
- 7.1.3. The nearest watercourse to the site is an Ordinary Watercourse location approximately 200m to the south of the site. However, the EA long-term flood risk map and the SFRA do not indicate any fluvial flood risk associated with this watercourse.
- 7.1.4. The SFRA identified a number of historic flooding events within the borough of Colchester. However, the historical flooding was primarily in the vicinity of the River Colne and none of the affected areas are within the vicinity of the site.

### 7.2. Flooding from Land (Surface Water)

- 7.2.1. Flooding from land occurs when intense rainfall is unable to soak into the ground or enter drainage systems. Local topography and built form can have a strong influence on the direction and depth of flow.
- 7.2.2. The EA indicative surface water flood map shows that the site is predominantly at a very low risk of flooding from surface water. However, the mapping data shows that there are areas of low flood risk along the south eastern boundary of the site and on the western boundary linking into Henrietta Close. Henrietta Close itself is shown as being at a high risk of surface water flooding. The junction of Henrietta Close and Richard Avenue is also affected by surface water flooding, with a medium risk. A copy of the EA indicative surface water flood map is provided in **Appendix H**.
- 7.2.3. No dwellings are proposed within the areas shown at a low risk of surface water flooding.
- 7.2.4. Overland flow paths will be taken into account in design of levels for the proposed development to direct overland flows away from buildings. Overland flow routes are shown on the Indicative Drainage Strategy.

7.2.5. On-site drainage systems will be designed to accommodate runoff volume from a 1 in 100 year plus 40% climate change rainfall event, so as to minimise overland flow routes in storms above this event.

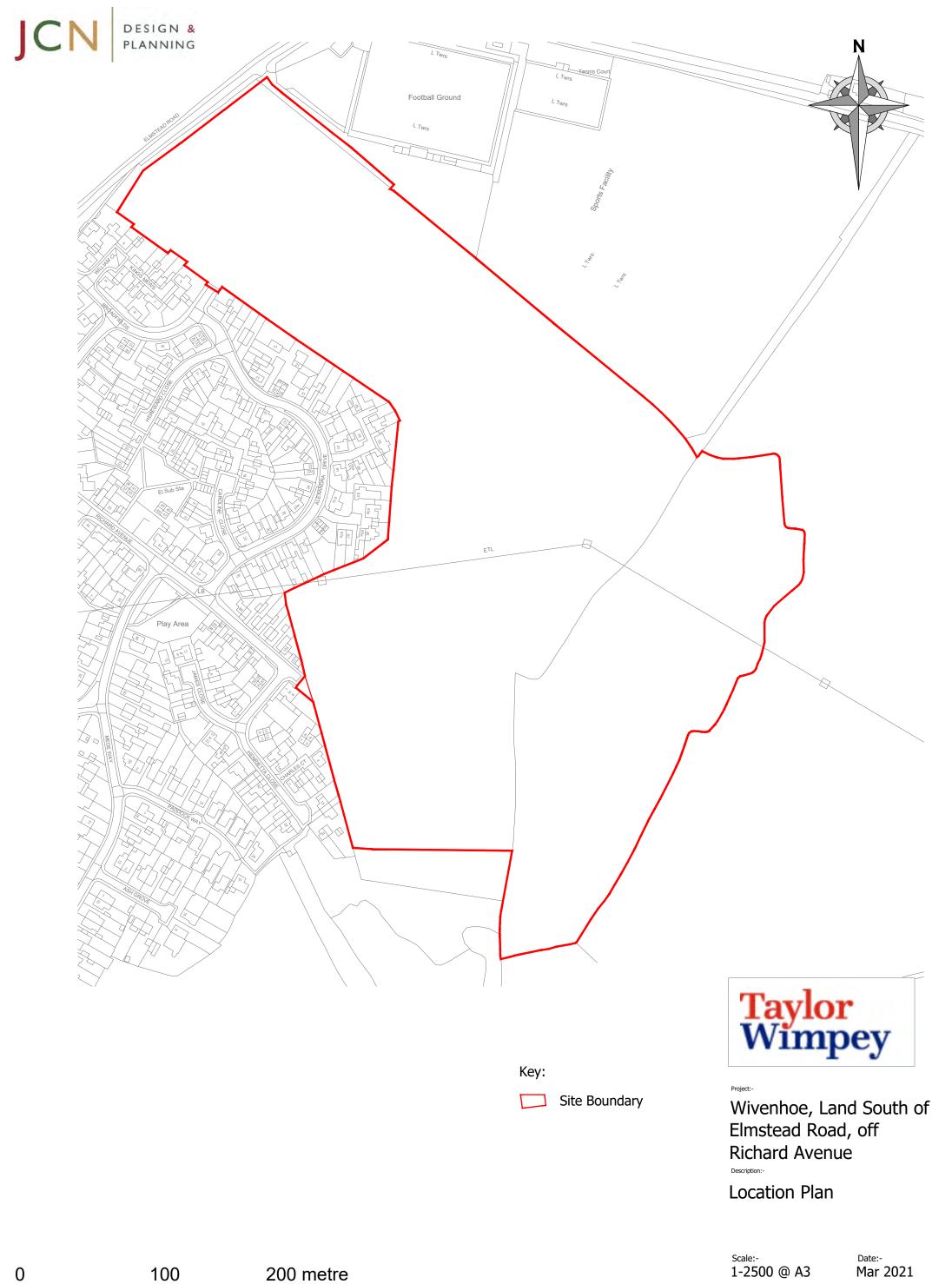
### 7.3. Flooding from Groundwater

- 7.3.1. Groundwater flooding occurs when water levels in the ground rise above surface elevations. Groundwater flooding events are most likely to occur in low lying areas underlain by permeable rocks (aquifers).
- 7.3.2. SFRA Mapping identifies that the site and immediate area has a less than 25% susceptibility to groundwater flooding. However, adjacent to the site, land is shown to have between 25%-50% susceptibility. A copy of the map showing this is provided in **Appendix I**.
- 7.3.3. The SFRA states that there have been no historic cases of flooding due to groundwater in the borough of Colchester. London Clay dominates the geology in the area.
- 7.3.4. Geotechnical information for the site indicates that there is a high groundwater table underneath the development site. It is recommended that groundwater monitoring is undertaken to inform the surface water strategy at the detailed design stage.
- 7.3.5. Overland flow routes will be taken into account in the design of levels for the proposed development and, should groundwater flooding occur on the site, flows will tend to run overland towards drainage features situated at the low area of the site.

### 7.4. Flooding from Sewers

- 7.4.1. There are no existing public sewers within the site. Sewers associated with the overall development will be designed in accordance with Local Authority and Water Authority requirements.
- 7.4.2. The SFRA identified three sewer flooding incidents within the Colchester borough. However, a sewer flooding history enquiry has been carried out with AWS who confirmed that they hold no records of flooding which can be attributed to the capacity limitations of the public sewer network within the vicinity of the site. A copy of their response is provided in **Appendix J**.

- 7.4.3. The development layout will be designed with consideration of flood routing, to ensure that new buildings and occupants of the site will not be subject to detrimental impacts in the event of flooding from infrastructure failure within or upstream of the site.
- 7.5. Flooding from Reservoirs, Canals and Other Artificial Sources
- 7.5.1. Inspection of the EA flood maps confirms the site is not at risk of flooding from reservoirs, canals or other artificial sources.
- 7.5.2. No other non-natural or artificial sources of flooding where water is retained above natural ground level, operational and redundant industrial processes including mining, quarrying and sand and gravel extraction, would appear to be located in the vicinity of the site which may cause increase floodwater depths or velocities.


### 8. Summary and Recommendations

- 8.1 Stomor Ltd have been commissioned by Taylor Wimpey East London to prepare a Flood Risk Assessment associated with the construction of residential development (Use Class C3), access, landscaping, public open space, and associated infrastructure works.
- 8.2 The whole site area comprises 11.58ha of undeveloped greenfield arable land, located in the north of Wivenhoe, on the eastern side of Richard Avenue.
- 8.3 The nearest watercourse to the site is an Ordinary Watercourse located approximately 200m to the south.
- 8.4 There is a public surface water sewer running adjacent to the eastern site boundary which connects to a 610mm diameter public surface water sewer to the south east of the site.
- 8.5 There are public foul water sewers within Henrietta Close and Richards Avenue, to the west of the site. These sewers connect to the pumping station at the southern end of Henrietta Close.
- 8.6 The site is located within a Groundwater Source Protection Zone 3 (outer zone).
- 8.7 Geotechnical investigations have indicated that there is a high groundwater table underlying the site which would make infiltration methods infeasible. It is recommended that groundwater monitoring is undertaken to inform the detailed design stage.
- 8.8 The proposed residential dwellings would have a NPPF flood risk vulnerability classification of 'More Vulnerable'. The site is located within Flood Zone 1, where all development types are appropriate.
- 8.9 The EA indicative surface water flood map shows that site is predominantly at a very low risk of flooding from surface water, with small, localised areas shown at a low risk.
- 8.10 It is considered that the site would not be at risk of flooding from fluvial sources, sewers, groundwater, or artificial sources.
- 8.11 Overland flow paths will be taken into account in design of levels for the proposed development to direct overland flows away from buildings.

8.12 The proposed surface water drainage strategy for the site demonstrates a system of SuDS and attenuation features to provide sufficient storage to avoid flooding within the site during the 1 in 100 year storm event + 40% allowance for climate change.

# APPENDIX A





100 200 metre 1-2500 @ A3 Mar 20

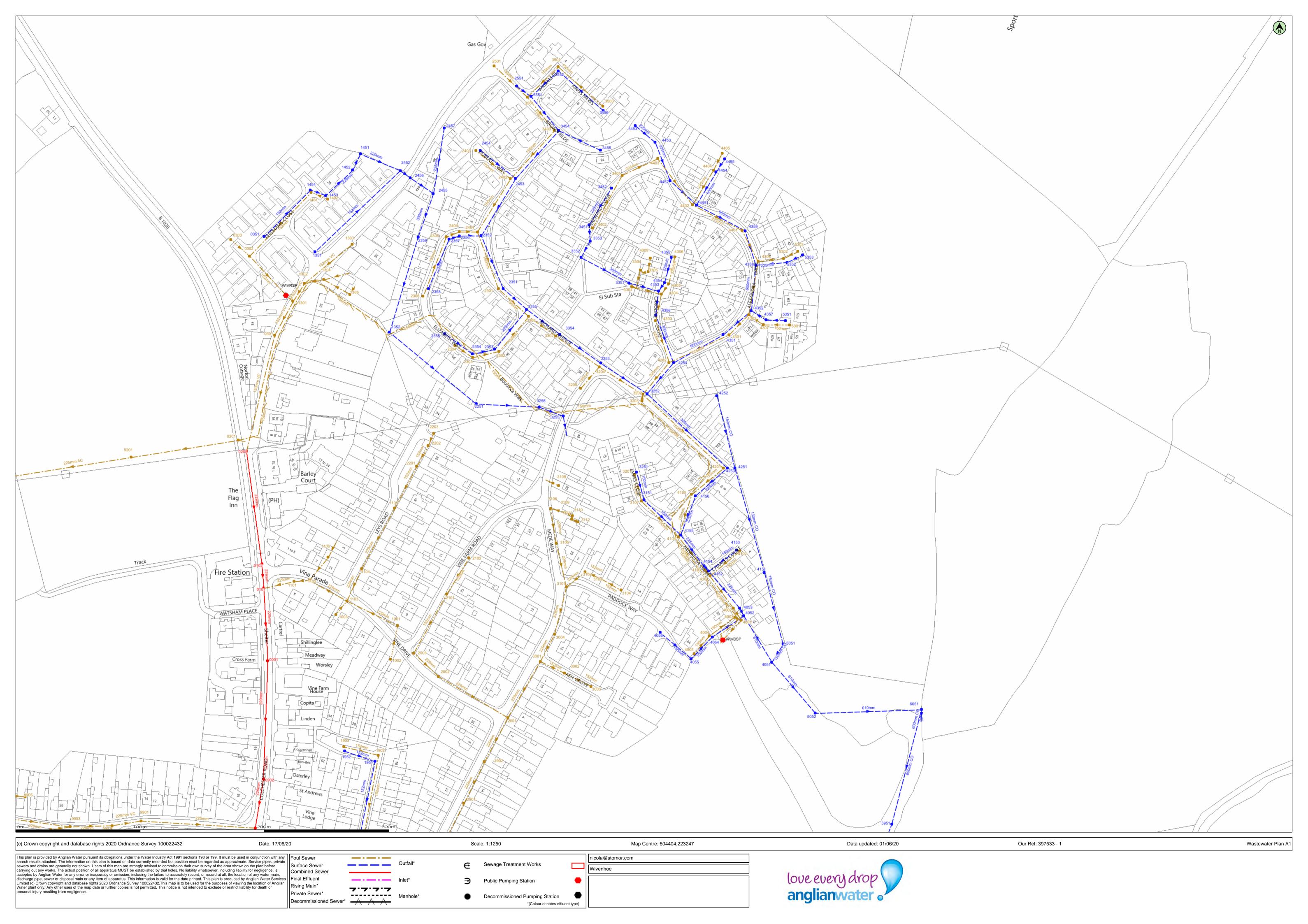
Drg no:- Revision:TW027-PL01-01 00

# APPENDIX B



# Magic Map






details as information may be illustrative or representative

rather than definitive at this stage.

# APPENDIX C





|              | rence Easting    | Northing         | Liquid Typ |             | el Invert Level |              |
|--------------|------------------|------------------|------------|-------------|-----------------|--------------|
| 0001         | 604093           | 223057           | С          | 32.01       | 30.3            | 1.71         |
| 0101         | 604090           | 223115           | С          | -           | -               | -            |
| 0102         | 604089           | 223134           | С          | 32.43       | 30.72           | 1.71         |
| 0202         | 604076           | 223225           | С          | 33.45       | 31.18           | 2.27         |
| 0901         | 604084           | 222922           | С          | 31.67       | 29.4            | 2.27         |
| 0902         | 604090           | 222962           | С          | 31.91       | 29.9            | 2.01         |
| 0201<br>0301 | 604070<br>604099 | 223234<br>223318 | F          | 32.94       | 30.31           | 2.63<br>1.36 |
| 0301         | 604099           | 223382           | F          | -           | -               | 2.28         |
| 0302         | 604079           | 223395           | F          | -           | -               | 0.96         |
| 1001         | 604198           | 223395           | F          | -           | -               | 1.15         |
| 1002         | 604192           | 223058           | F          | -           |                 | 1.02         |
| 1003         | 604148           | 223094           | F          | -           | -               | 0.85         |
| 1101         | 604115           | 223120           | F          | -           | -               | 1.45         |
| 1102         | 604127           | 223121           | F          | -           | -               | 1.4          |
| 1103         | 604157           | 223105           | F          | -           | -               | 1.24         |
| 1104         | 604169           | 223131           | F          | -           | -               | 1.24         |
| 1105         | 604196           | 223179           | F          | -           | -               | 1.11         |
| 1106         | 604142           | 223140           | F          | -           | -               | -            |
| 1301         | 604114           | 223345           | F          | -           | -               | 0.96         |
| 1302         | 604123           | 223360           | F          | -           | -               | 0.88         |
| 1303         | 604161           | 223391           | F          | -           | -               | 0.55         |
| 1304         | 604139           | 223363           | F          | -           | -               | -            |
| 1305         | 604160           | 223351           | F          | -           | -               | -            |
| 1401         | 604128           | 223433           | F          | -           | -               | 1.5          |
| 1402         | 604142           | 223428           | F          | -           | -               | 1.1          |
| 1902         | 604182           | 222981           | F          | 30.57       | 29.16           | 1.41         |
| 1903         | 604155           | 222988           | F          | 30.462      | 29.432          | 1.03         |
| 2001         | 604286           | 223011           | F          | 31.76       | 29.71           | 2.05         |
| 2002         | 604231           | 223044           | F          | - 32        | 30              | 2.03         |
| 2003<br>2101 | 604211           | 223063           | F          | 32<br>31.66 | 30 10           | 1.47         |
| 2101<br>2102 | 604237           | 223110<br>223139 | F          | 31.66       | 30.19           | 1.47         |
| 2102<br>2201 | 604255           | 223139           | F          | 31.44       | -               | 0.86         |
| 2201<br>2202 | 604213           | 223213           | F          | -           | -               | 0.86         |
| 2203         | 604227           | 223239           | F          | -           | -               | 0.65         |
| 2301         | 604279           | 223356           | F          | -           | -               | -            |
| 2302         | 604279           | 223305           | F          | 31.76       | 29.7            | 2.06         |
| 2303         | 604258           | 223300           | F          | 31.9        | 29.9            | 2            |
| 2304         | 604244           | 223310           | F          | 31.98       | 30.08           | 1.9          |
| 2305         | 604237           | 223397           | F          | 31.07       | 29.21           | 1.86         |
| 2306         | 604218           | 223350           | F          | 32.24       | 30.72           | 1.52         |
| 2401         | 604262           | 223401           | F          | -           | 29.4            | -            |
| 2402         | 604289           | 223444           | F          | -           | -               | -            |
| 2403         | 604261           | 223467           | F          | -           | -               | -            |
| 2404         | 604247           | 223401           | F          | 32.12       | 29.92           | 2.2          |
| 2501         | 604275           | 223535           | F          | -           | -               | -            |
| 2901         | 604251           | 222942           | F          | 30.555      | 28.325          | 2.23         |
| 2902         | 604268           | 222975           | F          | -           | 29.57           | -            |
| 3001         | 604313           | 223056           | F          | 31.56       | 29.86           | 1.7          |
| 3002         | 604332           | 223047           | F          | -           | -               | 1.51         |
| 3003         | 604353           | 223036           | F          | -           | -               | 1.2          |
| 3004<br>3101 | 604324<br>604334 | 223078           | F          | 31.15       | -               | 1.53         |
| 3101         | 604334           | 223116<br>223128 | F          | 32.92       | 30.05<br>31.15  | 1.1          |
| 3102         | 604361           | 223123           | F          | 52.92       | 31.13           | 0.55         |
| 3104         | 604377           | 223114           | F          | -           |                 | 0.4          |
| 3105         | 604325           | 223151           | F          | 31.5        | 30.38           | 1.12         |
| 3106         | 604321           | 223179           | F          | 32.89       | 31.84           | 1.05         |
| 3107         | 604394           | 223185           | F          | 30.48       | 28.54           | 1.94         |
| 3108         | 604327           | 223197           | F          | -           | -               | -            |
| 3109         | 604332           | 223176           | F          | -           | -               | -            |
| 3110         | 604339           | 223173           | F          | -           | -               | -            |
| 3111         | 604338           | 223170           | F          | -           | -               | -            |
| 3112         | 604343           | 223168           | F          | -           | -               | -            |
| 3201         | 604388           | 223206           | F          | 30.57       | 28.78           | 1.79         |
| 3202         | 604395           | 223271           | F          | -           | -               | -            |
| 3203         | 604394           | 223266           | F          | -           | -               | -            |
| 3204         | 604360           | 223293           | F          | -           | 29.63           | -            |
| 3205         | 604345           | 223276           | F          | 31.76       | 30.01           | 1.75         |
| 3301         | 604386           | 223357           | F          | 31.97       | 29.55           | 2.42         |
| 3302         | 604325           | 223317           | F          | -           | -               | -            |
| 3303         | 604303           | 223333           | F          | -           | 29.14           | -            |
| 3304         | 604393           | 223371           | F          | -           | -               | -            |
| 3305         | 604399           | 223369           | F          | -           | -               | - 0.45       |
| 3401         | 604378           | 223447           | F          | 32.36       | 30.21           | 2.15         |
| 3402<br>3403 | 604355<br>604324 | 223404<br>223483 | F          | 32.03       | 30.77           | 1.26         |
| 3501         | 604324           | 223510           | F          | -           | -               | -            |
| 3502         | 604327           | 223534           | F          | -           | -               | _            |
| 3503         | 604363           | 223502           | F          | -           | -               | -            |
| 4001         | 604474           | 223089           | F          | 28.85       | 26.4            | 2.45         |
| 4002         | 604468           | 223099           | F          | -           | -               | -            |
| 4003         | 604469           | 223092           | F          | 29.4        | 27.2            | 2.2          |
| 4004         | 604448           | 223077           | F          | 29.4        | 27.59           | 1.81         |
| 4005         | 604436           | 223062           | F          | 29.501      | 27.921          | 1.58         |
| 4101         | 604449           | 223125           | F          | -           | 27.66           | -            |
| 4102         | 604473           | 223145           | F          | 29.86       | 28.22           | 1.64         |
| 4103         | 604445           | 223130           | F          | 29.7        | 27.66           | 2.04         |
| 4104         | 604423           | 223156           | F          | 30.43       | 27.86           | 2.57         |
| 4105         | 604434           | 223190           | F          | 30.795      | 27.905          | 2.89         |
| 4201         | 604460           | 223211           | F          | 30.742      | 28.002          | 2.74         |
| 4202         | 604416           | 223296           | F          | 31.31       | 28.49           | 2.82         |
| 4301         | 604464           | 223319           | F          | 31.6        | 28.7            | 2.9          |
| 4302         | 604480           | 223335           | F          | 31.84       | 28.92           | 2.92         |
| 4303         | 604405           | 223330           | F          | 31.49       | 29.01           | 2.48         |
| 4304         | 604410           | 223351           | F          | 31.66       | 29.36           | 2.3          |
| 4305         | 604416           | 223359           | F          | 31.68       | 29.61           | 2.07         |
| 4306         | 604421           | 223381           | F          | 32.04       | 30              | 2.04         |
| 4307         | 604492           | 223327           | F          | 32.08       | 29.13           | 2.95         |
| 4308<br>4309 | 604488           | 223378           | F          | 32.1        | 29.2            | 2.9          |
| A:21.11.     | 604401           | 223380           | F          | -           | -               | -            |

| Manhole Reference    | ⊨asting | Northing | Liquid Type | Cover Level | invert Level | Depth to Invert |
|----------------------|---------|----------|-------------|-------------|--------------|-----------------|
| 1402                 | 604435  | 223423   | F           | 32.48       | 29.61        | 2.87            |
| 4403                 | 604407  | 223460   | F           | 32.58       | 29.85        | 2.73            |
| 4404                 | 604452  | 223451   | F           | 32.29       | 29.79        | 2.5             |
| 4405                 | 604459  | 223464   | F           | 32.4        | 29.88        | 2.52            |
| 5301                 | 604513  | 223327   | F           | 31.95       | 29.25        | 2.7             |
| 5302                 | 604508  | 223380   | F           | 31.98       | 29.58        | 2.4             |
| 5303                 | 604520  | 223386   | F           | 31.87       | 30.37        | 1.5             |
| 8905                 | 603899  | 222947   | F           | -           | -            | -               |
| 9201                 | 603984  | 223220   | F           | 32.75       | 29.86        | 2.89            |
| 9901                 | 603992  | 222928   | F           | 31.42       | 29.67        | 1.75            |
| 9902                 | 603968  | 222924   | F           | -           | -            | 1.68            |
| 9903                 | 603935  | 222923   | F           | 30.6        | 29.2         | 1.4             |
| 9903<br>9904         |         |          | F           | 30.6        | 29.2         | 1.4             |
|                      | 603919  | 222921   |             | -           | -            | 0.50            |
| 0351                 | 604091  | 223397   | S           | -           | -            | 0.58            |
| 1351                 | 604131  | 223385   | S           | -           | -            | 0.7             |
| 1352                 | 604191  | 223321   | S           | -           | -            | -               |
| 1451                 | 604168  | 223464   | S           | -           | -            | -               |
| 1452                 | 604162  | 223451   | S           | -           | -            | -               |
| 1453                 | 604140  | 223430   | S           | -           | -            | -               |
| 1454                 | 604128  | 223435   | S           | -           | -            | 0.8             |
| 1951                 | 604180  | 222976   | S           | -           | -            | -               |
| 1952                 | 604155  | 222984   | S           | -           | -            | -               |
| 2251                 | 604261  | 223263   | S           | -           | -            | -               |
| 2351                 | 604283  | 223356   | S           | -           | -            | -               |
| 2352                 | 604265  | 223398   | S           | -           | 30.14        | -               |
| 2353                 | 604276  | 223307   | S           | 31.71       | 30.11        | 1.6             |
| 2354                 | 604258  | 223303   |             | 31.71       | 30.25        | 1.65            |
|                      | 604236  | 223303   | S           |             |              |                 |
| 2355                 |         |          | S           | 32.11       | 30.41        | 1.7             |
| 2356                 | 604247  | 223398   | S           | 32.09       | 30.29        | 1.8             |
| 2357                 | 604239  | 223395   | S           | 31.99       | 30.53        | 1.46            |
| 2358                 | 604223  | 223356   | S           | 32.18       | 30.83        | 1.35            |
| 2359                 | 604214  | 223397   | S           | -           | -            | -               |
| 2452                 | 604200  | 223450   | S           | -           | -            | 1.13            |
| 2453                 | 604293  | 223444   | S           | -           | -            | -               |
| 2454                 | 604264  | 223467   | S           | -           | -            | -               |
| 2455                 | 604227  | 223432   | S           | -           | -            | -               |
| 2456                 | 604208  | 223445   | S           | -           | -            | -               |
| 2457                 | 604235  | 223485   | S           | -           | -            | -               |
| 2551                 | 604294  | 223518   | S           | -           | -            | -               |
| 3151                 | 604396  | 223186   | S           | 30.43       | 29.06        | 1.37            |
| 3251                 | 604390  | 223208   | S           | 30.69       | 29.29        | 1.4             |
| 3252                 |         |          | S           |             |              |                 |
|                      | 604398  | 223271   |             | -           | 29.2         | -               |
| 3253                 | 604361  | 223296   | S           | -           | -            | -               |
| 3255                 | 604331  | 223253   | S           | -           | -            | -               |
| 3256                 | 604312  | 223260   | S           | -           | -            | -               |
| 3351                 | 604384  | 223360   | S           | 32          | 30.1         | 1.9             |
| 3352                 | 604345  | 223381   | S           | 32.07       | 30.24        | 1.83            |
| 3353                 | 604353  | 223394   | S           | 32.19       | 30.28        | 1.91            |
| 3354                 | 604328  | 223319   | S           | -           | -            | -               |
| 3355                 | 604302  | 223339   | S           | -           | 29.95        | -               |
| 3451                 | 604352  | 223407   | S           | 32.07       | 30.37        | 1.7             |
| 3452                 | 604370  | 223437   | S           | 32.31       | 30.65        | 1.66            |
| 3453                 | 604389  | 223487   | S           | 32.38       | 30.83        | 1.55            |
| 3454                 | 604327  | 223483   | S           | -           | -            | 30.66           |
| 3455                 | 604361  | 223467   | S           | 32.32       | 30.77        | 1.55            |
| 3456                 | 604363  | 223499   | S           | 32.32       | 30.77        | 1.55            |
|                      |         |          |             | -           | -            | -               |
| 3551                 | 604305  | 223510   | S           | -           | -            | -               |
| 3552                 | 604327  | 223531   | S           | -           | -            | -               |
| 4051                 | 604499  | 223056   | S           | -           | -            | -               |
| 4052                 | 604476  | 223093   | S           | -           | -            | -               |
| 4053                 | 604473  | 223099   | S           | 29.25       | 27.9         | 1.35            |
| 4054                 | 604451  | 223076   | S           | 29.798      | 28.308       | 1.49            |
| 4055                 | 604434  | 223058   | S           | 29.996      | 28.596       | 1.4             |
| 4056                 | 604409  | 223079   | S           | 29.698      | 28.918       | 0.78            |
| 4151                 | 604493  | 223128   | S           | 30          | 29.11        | 0.89            |
| 4152                 | 604448  | 223129   | S           | -           | 28.55        | -               |
| 4153                 | 604470  | 223145   | S           | 29.84       | 28.69        | 1.15            |
| 4154                 | 604444  | 223143   | S           | -           | _5.55        | -               |
| 4154<br>4155         | 604425  | 223133   | S           | _           | 28.72        | _               |
|                      |         | 223158   | S           | _           | -            | _               |
| 4156                 | 604437  |          |             | 24          | 20.0         | 1.0             |
| 4251                 | 604469  | 223212   | S           | 31          | 29.8         | 1.2             |
| 4252                 | 604454  | 223270   | S           | 31.65       | 30.64        | 1.01            |
| 4253                 | 604463  | 223212   | S           | -           | -            | -               |
| 4254                 | 604420  | 223296   | S           | 31.36       | 29.21        | 2.15            |
| 4351                 | 604460  | 223319   | S           | 31.55       | 29.54        | 2.01            |
| 4352                 | 604482  | 223338   | S           | 31.87       | 29.63        | 2.24            |
| 4353                 | 604408  | 223354   | S           | 31.71       | 30.01        | 1.7             |
| 4354                 | 604412  | 223360   | S           | 31.72       | 30.17        | 1.55            |
| 4355                 | 604418  | 223381   | S           | 32          | 30.4         | 1.6             |
| 4356                 | 604405  | 223334   | S           | 31.55       | 29.95        | 1.6             |
| 4357                 | 604494  | 223330   | S           | 32.07       | 30.13        | 1.94            |
| 4358                 | 604486  | 223374   | S           | 32.12       | 29.72        | 2.4             |
| 4359                 | 604477  | 223402   | S           | 32.12       | 30.83        | 1.45            |
|                      |         |          |             |             |              |                 |
| 4451                 | 604438  | 223423   | S           | 32.43       | 29.93        | 2.5             |
| 4452                 | 604417  | 223443   | S           | 32.63       | 30.49        | 2.14            |
| 4453                 | 604405  | 223473   | S           | 32.57       | 30.72        | 1.85            |
| 4454                 | 604454  | 223449   | S           | 32.24       | 30.01        | 2.23            |
| 4455                 | 604461  | 223460   | S           | 32.2        | 30.06        | 2.14            |
| 5051                 | 604508  | 223070   | S           | 29.7        | 28.6         | 1.1             |
| 5052                 | 604534  | 223015   | S           | -           | -            | -               |
| 5351                 | 604510  | 223330   | S           | 31.97       | 30.54        | 1.43            |
| 5352                 | 604511  | 223377   | S           | 31.98       | 30.42        | 1.56            |
|                      | 604523  | 223383   | S           | 31.85       | 30.75        | 1.1             |
| 5353                 | 604595  | 222925   | S           | 29.18       | 26.1         | 3.08            |
|                      | UU TUUU |          | S           | -           | -            | -               |
| 5353<br>5951<br>6051 | 60/610  | 17772010 | 1.0         | 1           | I            |                 |
| 5951                 | 604619  | 223018   |             |             |              |                 |
| 5951                 | 604619  | 223018   |             |             |              |                 |
| 5951                 | 604619  | 223018   |             |             |              |                 |
| 5951                 | 604619  | 223018   |             |             |              |                 |
| 5951                 | 604619  | 223018   |             |             |              |                 |
| 5951                 | 604619  | 223018   |             |             |              |                 |
|                      | 604619  | 223018   |             |             |              |                 |
| 5951                 | 604619  | 223018   |             |             |              |                 |

| Manhole Reference | Easting | Northing | Liquid Type | Cover Level | Invert Level | Depth to Invert |
|-------------------|---------|----------|-------------|-------------|--------------|-----------------|
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |

| Manhole Reference | Easting | Northing | Liquid Type | Cover Level | Invert Level | Depth to Invert |
|-------------------|---------|----------|-------------|-------------|--------------|-----------------|
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |
|                   |         |          |             |             |              |                 |

# APPENDIX D





# Greenfield runoff rate estimation for sites

| Calculated by: | Josh Newman    |
|----------------|----------------|
| Site name:     | Richard Avenue |
| Site location: | Wivenhoe       |

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

# www.uksuds.com | Greenfield runoff tool

#### Site Details

Latitude: 51.87040° N Longitude: 0.96962° E

Reference: 403073977

Date: Feb 26 2021 13:49

### Runoff estimation approach

IH124

#### Site characteristics

**Notes** 

Total site area (ha):

4.9

### (1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$ ?

Methodology

Q<sub>BAR</sub> estimation method: SPR estimation method:

Calculate from SPR and SAAR

Calculate from SOIL type

When Q<sub>BAR</sub> is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

#### Soil characteristics

SOIL type: **HOST class:** SPR/SPRHOST:

## **Hydrological characteristics**

SAAR (mm):

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

| Default | Edited |  |
|---------|--------|--|
|         | 4      |  |
| N/A     | N/A    |  |
| 0.1     | 0.47   |  |

Edited

552

0.85

2.3

3.19

3.74

6

Default

552

0.85

2.3

3.19

3.74

6

# (2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

### (3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

### Greenfield runoff rates

Q<sub>BAR</sub> (I/s): 1 in 1 year (l/s): 1 in 30 years (l/s): 1 in 100 year (l/s): 1 in 200 years (I/s):

| Default | efault Edited |  |
|---------|---------------|--|
| 0.62    | 17.92         |  |
| 0.53    | 15.23         |  |
| 1.43    | 41.21         |  |
| 1.99    | 57.15         |  |
| 2.33    | 67.01         |  |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

# APPENDIX E







# **Pre-planning Assessment Report**

WIVENHOE, LAND SOUTH OR RICHARD AVENUE

InFlow Reference: PPE- 0072760

Assessment Type: Used Water

Report published: 04/06/2020

This report supersedes the previous version published on 25/11/2019







Thank you for submitting a pre-planning enquiry.

This report has been produced for Taylor Wimpey East London

Your InFlow reference number is PPE-0072760

If you have any questions upon receipt of this report, please contact the Pre-development team on **03456 066 087** or email <a href="mailto:planningliaison@anglianwater.co.uk">planningliaison@anglianwater.co.uk</a>.

#### Section 1

### **Proposed Development**

The response within this report has been based on the following information which was submitted as part of your application:

| List of planned developments |              |  |
|------------------------------|--------------|--|
| Type of development          | No. Of units |  |
| Dwellings                    | 120          |  |

### The anticipated build rate is:

| Year       | Y1 | Y2 | Y3 |
|------------|----|----|----|
| Build rate | 50 | 50 | 20 |

Development type: Greenfield

Planning application status: Pending Consideration

Site grid reference number: TM0459123178

The comments contained within this report relate to the public water mains and sewers indicated on our records.

Your attention is drawn to the disclaimer in the useful information section of this report.

### **Section 2 Assets affected**

Our records indicate that there are no public water mains/public sewers or other assets owned by Anglian Water within the boundary of your development site. However, it is highly recommended that you carry out a thorough investigation of your proposed working area to establish whether any unmapped public or private sewers and lateral drains are in existence.

Due to the private sewer transfer in October 2011 many newly adopted public used water assets and their history are not indicated on our records. You also need to be aware that your development site may contain private water mains, drains or other assets not shown on our records. These are private assets and not the responsibility of Anglian Water but that of the landowner.

### **Section 3 Water recycling services**

In examining the used water system we assess the ability for your site to connect to the public sewerage network without causing a detriment to the operation of the system. We also assess the receiving water recycling centre and determine whether the water recycling centre can cope with the increased flow and influent quality arising from your development.

### Water recycling centre

The foul drainage from the proposed development is in the catchment of Colchester Water Recycling Centre, which currently has capacity to treat the flows from your development site. Anglian Water cannot reserve capacity and the available capacity at the water recycling centre can be reduced at any time due to growth, environmental and regulation driven changes

### Used water network

Our assessment has been based on development flows connecting to the nearest foul water sewer of the same size or greater pipe diameter to that required to drain the site. The infrastructure to convey foul water flows to the receiving sewerage network is assumed to be the responsibility of the developer. Conveyance to the connection point is considered as Onsite Work and includes all work carried out upstream from of the point of connection, including making the connection to our existing network. This connection point has been determined in reference to the calculated discharge flow and on this basis, a 150mm internal diameter pipe is required to drain the development site.

The nearest practicable connection is to the 150mm diameter sewer at manhole 4201 in Henrietta Close at National Grid Reference NGR TM 04458 23211. Anglian water has assessed the impact of gravity flows from the planned development to this point and unfortunately there is insufficient capacity in this sewer to accommodate your site.

We have therefore considered an alternative connection point and can confirm that there is sufficient capacity for a connection at or downstream of manhole TM0423 4001, located in Henrietta Close, at National Grid Reference TM 04474 23089.

This is the recommended connection point. Anglian Water will reimburse reasonable costs incurred in connecting to the recommended connection point, over and above those required to connect to the nearest point of connection. Please note that Anglian Water will request a suitably worded condition at planning application stage to ensure this strategy is implemented to mitigate the risk of flooding.

It is assumed that the developer will provide the necessary infrastructure to convey flows from the site to the network. Consequently, this report does not include any costs for the conveyance of flows

#### Surface water disposal

In principle, your proposed method of surface water disposal is acceptable to Anglian Water. It is our understanding that the evidence to confirm compliance with the surface water hierarchy is not yet available. Once the evidence has been confirmed, then a connection point may be made at or downstream of manhole TM0423 4051, located in land south of the development site, at a rate of 15l/s.

It is your responsibility to provide the evidence to confirm that all alternative methods of surface water disposal have been explored and these will be required before your connection can be agreed.

This is subject to satisfactory evidence which shows the surface water management hierarchy as outlined in Building Regulations Part H has been explored. This would encompass the results from the site specific infiltration testing and/or confirmation that the flows cannot be discharged to a watercourse.

#### **Trade Effluent**

We note that you do not have any trade effluent requirements. Should this be required in the future you will need our written formal consent. This is in accordance with Section 118 of the Water Industry Act (1991).

#### **Used Water Budget Costs**

Your development site will be required to pay an infrastructure charge for each new property connecting to the public sewer that benefits from Full planning permission.

You will be required to pay an infrastructure charge upon connection for each new plot on your development site. The infrastructure charge are types of charges set out in Section 146(2) of the Water Industry Act 1991

The charge should be paid by anyone who wishes to build or develop a property and is payable upon request of connection.

Payment of the infrastructure charge must be made before premises are connected to the public sewer.

Infrastructure charge for water recycling:

£570.00

The total infrastructure charge payable for your site for water is:

| Infrastructure charge | Number of units | Total       |
|-----------------------|-----------------|-------------|
| £570.00               | 120             | £ 68,400.00 |

Infrastructure charges are raised on a standard basis of one charge per new connection (one for water and one for sewerage). However, if the new connection is to non-household premises, the fixed element is calculated according to the number and type of water fittings in the premises. This is called the "relevant multiplier" method of calculating the charge.

Details of the relevant multiplier for each fitting can be found at our website.

It has been assumed that the onsite used water network will be provided under Section 104 of the Water Industry Act

It is recommended that you also budget for connection costs.

Please note that we offer alternative types of connections depending on your needs and these costs are available at our <u>website</u>.

# Section 4 Map of proposed connection points



Figure 1: Your used water point of connection



Figure 2: Surface water point of connection

#### Section 5 Useful information

## Water Industry Act – Key Used Water Sections:

#### Section 98:

This provides you with the right to requisition a new public sewer. The new public sewer can be constructed by Anglian Water on your behalf. Alternatively, you can construct the sewer yourself under section 30 of the Anglian Water Authority Act 1977.

#### Section 102:

This provides you with the right to have an existing sewerage asset vested by us. It is your responsibility to bring the infrastructure to an adoptable condition ahead of the asset being vested.

#### Section 104

This provides you with the right to have a design technically vetted and an agreement reached that will see us adopt your assets following their satisfactory construction and connection to the public sewer.

#### Section 106

This provides you with the right to have your constructed sewer connected to the public sewer.

#### Section 185

This provides you with the right to have a public sewerage asset diverted.

Details on how to make a formal application for a new sewer, new connection or diversion are available on our <u>website</u> or our Development Services team on 03456 066 087.

### Sustainable drainage systems

Many existing urban drainage systems can cause problems of flooding, pollution or damage to the environment and are not resilient to climate change in the long term.

Our preferred method of surface water disposal is through the use of Sustainable Drainage Systems or SuDS.

SuDS are a range of techniques that aim to mimic the way surface water drains in natural systems within urban areas. For more information on SuDS, please visit our <u>website</u>

We recommend that you contact the Local Authority and Lead Local Flood Authority (LLFA) for your site to discuss your application.

#### Private sewer transfer

Sewers and lateral drains connected to the public sewer on the 1 July 2011 transferred into Water Company ownership on the 1 October 2011. This follows the implementation of the Floods and Water Management Act (FWMA). This included sewers and lateral drains that were subject to an existing Section 104 Adoption Agreement and those that were not. There were exemptions and the main non-transferable assets were as follows:

Surface water sewers and lateral drains that do not discharge to the public sewer, e.g. those that discharged to a watercourse.

Foul sewers and lateral drains that discharge to a privately owned sewage treatment/collection facility.

Pumping stations and rising mains will transfer between 1 October 2011 and 1 October 2016.

The implementation of Section 42 of the FWMA will ensure that future private sewers will not be created.

It is anticipated that all new sewer applications will need to have an approved Section104 application ahead of a Section 106 connection.

### **Encroachment**

Anglian Water operates a risk based approach to development encroaching close to our used water infrastructure. We assess the issue of encroachment if you are planning to build within 400 metres of a water recycling centre or, within 15 metres to 100 metres of a pumping station. We have more information available on our website at http://anglianwater.co.uk/developers/encroachment.aspx

### **Locating our assets**

Maps detailing the location of our water and used water infrastructure including both underground assets and above ground assets such as pumping stations and recycling centres are available from digdat.

All requests from members of the public or non-statutory bodies for maps showing the location of our assets will be subject to an appropriate administrative charge.

We have more information on our website

# **Charging Arrangements**

Our charging arrangements and summary for this year's water and used water connection and infrastructure charges can be found on our <u>website</u>.

#### **Section 6 Disclaimer**

The information provided in this report is based on data currently held by Anglian Water Services Limited ('Anglian Water') or provided by a third party. Accordingly, the information in this report is provided with no guarantee of accuracy, timeliness, completeness and is without indemnity or warranty of any kind (express or implied).

This report should not be considered in isolation and does not nullify the need for the enquirer to make additional appropriate searches, inspections and enquiries. Anglian Water supports the plan led approach to sustainable development that is set out in the National Planning Policy Framework ('NPPF') and any infrastructure needs identified in this report must be considered in the context of current, adopted and/or emerging local plans. Where local plans are absent, silent or have expired these needs should be considered against the definition of sustainability holistically as set out in the NPPF.

Whilst the information in this report is based on the presumption that proposed development obtains planning permission, nothing in this report confirms that planning permission will be granted or that Anglian Water will be bound to carry out the works/proposals contained within this report.

No liability whatsoever, including liability for negligence is accepted by Anglian Water or its partners, employees or agents, for any error or omission, or for the results obtained from the use of this report and/or its content. Furthermore in no event will any of those parties be liable to the applicant or any third party for any decision made or action taken as a result of reliance on this report.

This report is valid for the date printed and the enquirer is advised to resubmit their request for an up to date report should there be a delay in submitting any subsequent application for water supply/sewer connection(s).

# APPENDIX F





# APPENDIX G



| Stomor Ltd            |                | Page 0    |
|-----------------------|----------------|-----------|
| 32 Beehive Lane       | Wivenhoe       |           |
| Welwyn Garden City    |                |           |
| Herts AL7 4BQ         |                | Micro     |
| Date 12/03/2021 11:48 | Designed by JN | Drainage  |
| File ST-2981-C.mdx    | Checked by     | Dialilade |
| Micro Drainage        | Network 2019 1 | •         |

# Existing Network Details for Surface Network 1

\* - Indicates pipe has been modified outside of System 1 # - Indicates pipe length does not match coordinates

|   | PN    | Length (m) | Fall<br>(m) | Slope (1:X) | I.Area<br>(ha) | T.E.<br>(mins) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type |
|---|-------|------------|-------------|-------------|----------------|----------------|-----------|-------------|-------------|--------------|
| * | 1.000 | 56.894     | 0.285       | 199.6       | 0.129          | 5.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 2.000 | 12.781     | 0.060       | 213.0       | 0.129          | 5.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 1.001 | 46.862     | 0.231       | 202.9       | 0.129          | 0.00           | 0.600     | 0           | 525         | Pipe/Conduit |
| * | 3.000 | 28.687     | 0.691       | 41.5        | 0.129          | 5.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 1.002 | 21.380     | 0.117       | 182.7       | 0.129          | 0.00           | 0.600     | 0           | 525         | Pipe/Conduit |
| * | 1.003 | 14.401     | 0.057       | 252.6       | 0.129          | 0.00           | 0.600     | 0           |             | Pipe/Conduit |
| * | 1.004 | 26.193     | 0.105       | 249.5       | 0.129          | 0.00           | 0.600     | 0           |             | Pipe/Conduit |
| * | 1.005 | 32.331     | 0.129       | 250.6       | 0.129          | 0.00           | 0.600     | 0           |             | Pipe/Conduit |
| * | 1.006 | 16.111     | 0.065       | 247.9       | 0.129          | 0.00           | 0.600     | 0           | 600         | Pipe/Conduit |
| * | 4.000 | 25.696     | 0.128       | 200.8       | 0.129          | 5.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 4.001 | 24.030     | 0.236       | 101.8       | 0.129          | 0.00           | 0.600     | 0           | 375         | Pipe/Conduit |
| * | 1.007 | 18.451     | 0.061       | 302.5       | 0.129          | 0.00           | 0.600     | 0           | 675         | Pipe/Conduit |
| * | 1.008 | 20.972     | 0.070       | 299.6       | 0.129          | 0.00           | 0.600     | 0           | 675         | Pipe/Conduit |
| * | 1.009 | 9.310      | 0.031       | 300.3       | 0.129          | 0.00           | 0.600     | 0           |             | Pipe/Conduit |
| * | 5.000 | 16.482     | 0.110       | 149.8       | 0.129          | 5.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 5.001 | 28.395     | 0.284       | 100.0       | 0.129          |                | 0.600     | 0           |             | Pipe/Conduit |

|   | PN    | US/MH | US/CL  | US/IL  | US          | DS/CL  | DS/IL  | DS          | Ctrl | US/MH |
|---|-------|-------|--------|--------|-------------|--------|--------|-------------|------|-------|
|   |       | Name  | (m)    | (m)    | C.Depth (m) | (m)    | (m)    | C.Depth (m) |      | (mm)  |
|   |       |       |        |        | <b>\</b> /  |        |        | <b>\</b> /  |      |       |
| * | 1.000 | S1    | 31.880 | 30.050 | 1.530       | 31.800 | 29.765 | 1.735       |      | 1200  |
| * | 2.000 | S2    | 31.800 | 29.900 | 1.600       | 31.800 | 29.840 | 1.660       |      | 1200  |
| * | 1.001 | s3    | 31.800 | 29.615 | 1.660       | 31.744 | 29.384 | 1.835       |      | 1500  |
| * | 3.000 | S4    | 31.858 | 30.300 | 1.258       | 31.744 | 29.609 | 1.835       |      | 1200  |
| * | 1.002 | S5    | 31.744 | 29.384 | 1.835       | 31.764 | 29.267 | 1.972       |      | 1500  |
| * | 1.003 | S6    | 31.764 | 29.267 | 1.972       | 31.731 | 29.210 | 1.996       |      | 1500  |
| * | 1.004 | s7    | 31.731 | 29.210 |             | 31.590 |        | 1.960       |      | 1500  |
| * | 1.005 | S8    | 31.590 | 29.030 | 1.960       | 31.222 | 28.901 | 1.721       |      | 1500  |
| * | 1.006 | S9    | 31.222 | 28.901 | 1.721       | 31.209 | 28.836 | 1.773       |      | 1500  |
| * | 4.000 | S10   | 30.868 | 29.500 | 1.068       | 31.039 | 29.372 | 1.367       |      | 1200  |
| * | 4.001 | S11   | 31.039 | 29.297 | 1.367       | 31.209 | 29.061 | 1.773       |      | 1500  |
| * | 1.007 | S12   | 31.209 | 28.761 | 1.773       | 31.264 | 28.700 | 1.889       |      | 1500  |
|   | 1.008 |       | 31.264 |        |             | 31.272 |        |             |      | 1500  |
| * | 1.009 | S14   | 31.272 | 28.555 | 1.967       | 31.222 | 28.524 | 1.948       |      | 1800  |
| * | 5.000 | S16   | 31.336 | 29.900 | 1.136       | 31.203 | 29.790 | 1.113       |      | 1200  |
| * | 5.001 | S17   | 31.203 | 29.790 | 1.113       | 30.912 | 29.506 | 1.106       |      | 1200  |
|   |       |       |        |        |             |        |        |             |      |       |

©1982-2019 Innovyze

| Stomor Ltd            |                | Page 1    |
|-----------------------|----------------|-----------|
| 32 Beehive Lane       | Wivenhoe       |           |
| Welwyn Garden City    |                |           |
| Herts AL7 4BQ         |                | Micro     |
| Date 12/03/2021 11:48 | Designed by JN | Drainage  |
| File ST-2981-C.mdx    | Checked by     | Dialilade |
| Micro Drainage        | Network 2019.1 | '         |

# Existing Network Details for Surface Network 1

|   | PN    | Length<br>(m) | Fall<br>(m) | Slope (1:X) | I.Area<br>(ha) | T.E.<br>(mins) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type |
|---|-------|---------------|-------------|-------------|----------------|----------------|-----------|-------------|-------------|--------------|
| * | 5.002 | 27.353        | 0.751       | 36.4        | 0.129          | 0.00           | 0.600     | 0           | 375         | Pipe/Conduit |
| * | 1.010 | 58.684        | 0.147       | 399.2       | 0.129          | 0.00           | 0.600     | 0           | 900         | Pipe/Conduit |
| * | 6.000 | 19.570        | 0.085       | 230.2       | 0.129          | 5.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 6.001 | 39.462        | 0.158       | 249.8       | 0.129          | 0.00           | 0.600     | 0           | 375         | Pipe/Conduit |
| * | 1.011 | 17.591        | 0.327       | 53.8        | 0.129          | 0.00           | 0.600     | 0           | 900         | Pipe/Conduit |
| * | 7.000 | 54.222        | 0.217       | 249.9       | 0.129          | 5.00           | 0.600     | 0           | 375         | Pipe/Conduit |
| * | 1.012 | 33.812        | 0.085       | 397.8       | 0.129          | 0.00           | 0.600     | 0           | 900         | Pipe/Conduit |
| * | 8.000 | 32.323        | 0.324       | 99.8        | 0.129          | 5.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 1.013 | 17.073        | 0.042       | 406.5       | 0.129          | 0.00           | 0.600     | 0           | 900         | Pipe/Conduit |
| * | 1.014 | 10.000#       | 0.000       | 0.0         | 0.170          | 0.00           | 0.600     | 0           | 300         | Pipe/Conduit |
| * | 1.015 | 10.000#       | 0.100       | 100.0       | 0.000          | 0.00           | 0.600     | 0           | 225         | Pipe/Conduit |

|   | PN                      | US/MH<br>Name | US/CL<br>(m)     | US/IL<br>(m) | US<br>C.Depth<br>(m) | DS/CL<br>(m)               | DS/IL<br>(m) | DS<br>C.Depth<br>(m) |              | US/MH<br>(mm)        |
|---|-------------------------|---------------|------------------|--------------|----------------------|----------------------------|--------------|----------------------|--------------|----------------------|
| * | 5.002                   | S18           | 30.912           | 29.431       | 1.106                | 31.222                     | 28.680       | 2.167                |              | 1500                 |
| * | 1.010                   | S19           | 31.222           | 28.374       | 1.948                | 30.876                     | 28.227       | 1.749                |              | 1800                 |
|   | 6.000<br>6.001          |               | 30.570<br>30.844 |              | 1.200<br>1.559       | 30.844<br>30.876           |              |                      |              | 1200<br>1500         |
| * | 1.011                   | S22           | 30.876           | 28.227       | 1.749                | 30.805                     | 27.900       | 2.005                |              | 1800                 |
| * | 7.000                   | S23           | 30.276           | 28.642       | 1.259                | 30.805                     | 28.425       | 2.005                |              | 1500                 |
| * | 1.012                   | S24           | 30.805           | 27.900       | 2.005                | 30.686                     | 27.815       | 1.971                |              | 1800                 |
| * | 8.000                   | S25           | 30.511           | 28.712       | 1.499                | 30.686                     | 28.388       | 1.998                |              | 1200                 |
| * | 1.013<br>1.014<br>1.015 | Basin         |                  | 27.600       | 2.300                | 30.200<br>30.300<br>29.114 | 27.600       | 2.400                | Hudro-Prako® | 1800<br>1800<br>1200 |
| _ | 1.015                   | F/C           | 30.300           | 27.600       | 2.4/5                | ∠9.114                     | 27.500       | 1.389                | Hydro-Brake® | T700                 |

| Stomor Ltd            |                | Page 2    |
|-----------------------|----------------|-----------|
| 32 Beehive Lane       | Wivenhoe       |           |
| Welwyn Garden City    |                | Car and   |
| Herts AL7 4BQ         |                | Mirro     |
| Date 12/03/2021 11:48 | Designed by JN | Drainage  |
| File ST-2981-C.mdx    | Checked by     | nigiriade |
| Micro Drainage        | Network 2019.1 | ,         |

# $\underline{\textit{PIPELINE SCHEDULES for Surface Network 1}}$

## <u>Upstream Manhole</u>

# - Indicates pipe length does not match coordinates

| PN    | -    |      |      | C.Level (m) | I.Level (m) | D.Depth (m) | MH<br>Connection | MH DIAM., L*W (mm) |
|-------|------|------|------|-------------|-------------|-------------|------------------|--------------------|
|       | sect | (mm) | Name | (m)         | (m)         | (m)         | Connection       | (mun)              |
| 1.000 | 0    | 300  | S1   | 31.880      | 30.050      | 1.530       | Open Manhole     | 1200               |
| 2.000 | 0    | 300  | S2   | 31.800      | 29.900      | 1.600       | Open Manhole     | 1200               |
| 1.001 | 0    | 525  | s3   | 31.800      | 29.615      | 1.660       | Open Manhole     | 1500               |
| 3.000 | 0    | 300  | S4   | 31.858      | 30.300      | 1.258       | Open Manhole     | 1200               |
| 1.002 | 0    | 525  | S5   | 31.744      | 29.384      | 1.835       | Open Manhole     | 1500               |
| 1.003 | 0    | 525  | s6   | 31.764      | 29.267      | 1.972       | Open Manhole     | 1500               |
| 1.004 | 0    | 525  | s7   | 31.731      | 29.210      |             | Open Manhole     |                    |
| 1.005 | 0    | 600  | S8   | 31.590      | 29.030      |             | Open Manhole     |                    |
| 1.006 | 0    | 600  | S9   | 31.222      | 28.901      | 1.721       | Open Manhole     | 1500               |
| 4.000 | 0    | 300  | S10  | 30.868      | 29.500      | 1.068       | Open Manhole     | 1200               |
| 4.001 | 0    | 375  | S11  | 31.039      | 29.297      |             | Open Manhole     |                    |
| 1.007 | 0    | 675  | S12  | 31.209      | 28.761      | 1.773       | Open Manhole     | 1500               |
| 1.008 | 0    | 675  | S13  | 31.264      | 28.700      | 1.889       | Open Manhole     | 1500               |
| 1.009 | 0    | 750  | S14  | 31.272      | 28.555      | 1.967       | Open Manhole     | 1800               |
| 5.000 | 0    | 300  | S16  | 31.336      | 29.900      | 1.136       | Open Manhole     | 1200               |
| 5.001 | 0    | 300  | S17  | 31.203      | 29.790      | 1.113       | Open Manhole     | 1200               |

# Downstream Manhole

| PN    | Length              | Slope | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |  |  |  |
|-------|---------------------|-------|------|---------|---------|---------|--------------|---------------|--|--|--|
|       | (m)                 | (1:X) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |  |  |  |
| 1.000 | 56.894              | 199.6 | s3   | 31.800  | 29.765  | 1.735   | Open Manhole | 1500          |  |  |  |
| 2.000 | 12.781              | 213.0 | s3   | 31.800  | 29.840  | 1.660   | Open Manhole | 1500          |  |  |  |
| 1.001 | 46.862              | 202.9 | S5   | 31.744  | 29.384  | 1.835   | Open Manhole | 1500          |  |  |  |
| 3.000 | 28.687              | 41.5  | S5   | 31.744  | 29.609  | 1.835   | Open Manhole | 1500          |  |  |  |
| 1.002 | 21.380              | 182.7 | S6   | 31.764  | 29.267  | 1.972   | Open Manhole | 1500          |  |  |  |
| 1.003 | 14.401              | 252.6 | s7   | 31.731  | 29.210  | 1.996   | Open Manhole | 1500          |  |  |  |
| 1.004 | 26.193              | 249.5 | S8   | 31.590  | 29.105  | 1.960   | Open Manhole | 1500          |  |  |  |
| 1.005 | 32.331              | 250.6 | S9   | 31.222  | 28.901  | 1.721   | Open Manhole | 1500          |  |  |  |
| 1.006 | 16.111              | 247.9 | S12  | 31.209  | 28.836  | 1.773   | Open Manhole | 1500          |  |  |  |
| 4.000 | 25.696              | 200.8 | S11  | 31.039  | 29.372  | 1.367   | Open Manhole | 1500          |  |  |  |
| 4.001 | 24.030              | 101.8 | S12  | 31.209  | 29.061  | 1.773   | Open Manhole | 1500          |  |  |  |
| 1.007 | 18.451              | 302.5 | S13  | 31.264  | 28.700  | 1.889   | Open Manhole | 1500          |  |  |  |
| 1.008 | 20.972              | 299.6 | S14  | 31.272  | 28.630  | 1.967   | Open Manhole | 1800          |  |  |  |
| 1.009 | 9.310               | 300.3 | S19  | 31.222  | 28.524  | 1.948   | Open Manhole | 1800          |  |  |  |
| 5.000 | 16.482              | 149.8 | S17  | 31.203  | 29.790  | 1.113   | Open Manhole | 1200          |  |  |  |
| 5.001 | 28.395              | 100.0 | S18  | 30.912  | 29.506  | 1.106   | Open Manhole | 1500          |  |  |  |
|       | ©1982-2019 Innovyze |       |      |         |         |         |              |               |  |  |  |
|       | ©1902-2019 Innovyze |       |      |         |         |         |              |               |  |  |  |

| Stomor Ltd            |                |                   |  |  |  |
|-----------------------|----------------|-------------------|--|--|--|
| 32 Beehive Lane       | Wivenhoe       |                   |  |  |  |
| Welwyn Garden City    |                | The second second |  |  |  |
| Herts AL7 4BQ         |                | Micro             |  |  |  |
| Date 12/03/2021 11:48 | Designed by JN | Drainage          |  |  |  |
| File ST-2981-C.mdx    | Checked by     | Dialilage         |  |  |  |
| Micro Drainage        | Network 2019.1 | '                 |  |  |  |

# $\underline{\textit{PIPELINE SCHEDULES for Surface Network 1}}$

## <u>Upstream Manhole</u>

| PN    | - | Diam<br>(mm) |       | C.Level (m) | I.Level (m) | D.Depth (m) | MH<br>Connection | MH DIAM., L*W (mm) |
|-------|---|--------------|-------|-------------|-------------|-------------|------------------|--------------------|
| 5.002 | 0 | 375          | S18   | 30.912      | 29.431      | 1.106       | Open Manhole     | 1500               |
| 1.010 | 0 | 900          | S19   | 31.222      | 28.374      | 1.948       | Open Manhole     | 1800               |
| 6.000 | 0 | 300          | S20   | 30.570      | 29.070      | 1.200       | Open Manhole     | 1200               |
| 6.001 | 0 | 375          | S21   | 30.844      | 28.910      | 1.559       | Open Manhole     | 1500               |
| 1.011 | 0 | 900          | S22   | 30.876      | 28.227      | 1.749       | Open Manhole     | 1800               |
| 7.000 | 0 | 375          | S23   | 30.276      | 28.642      | 1.259       | Open Manhole     | 1500               |
| 1.012 | 0 | 900          | S24   | 30.805      | 27.900      | 2.005       | Open Manhole     | 1800               |
| 8.000 | 0 | 300          | S25   | 30.511      | 28.712      | 1.499       | Open Manhole     | 1200               |
| 1.013 | 0 | 900          | S26   | 30.686      | 27.815      | 1.971       | Open Manhole     | 1800               |
| 1.014 | 0 | 300          | Basin | 30.200      | 27.600      | 2.300       | Open Manhole     | 1800               |
| 1.015 | 0 | 225          | F/C   | 30.300      | 27.600      | 2.475       | Open Manhole     | 1200               |

## <u>Downstream Manhole</u>

| PN             | Length<br>(m)                | Slope (1:X) | MH<br>Name | C.Level (m)                | I.Level (m)                | D.Depth<br>(m) | MH<br>Connection                             | MH DIAM., L*W (mm) |
|----------------|------------------------------|-------------|------------|----------------------------|----------------------------|----------------|----------------------------------------------|--------------------|
| 5.002          | 27.353                       | 36.4        | S19        | 31.222                     | 28.680                     | 2.167          | Open Manhole                                 | 1800               |
| 1.010          | 58.684                       | 399.2       | S22        | 30.876                     | 28.227                     | 1.749          | Open Manhole                                 | 1800               |
| 6.000<br>6.001 | 19.570<br>39.462             |             |            | 30.844<br>30.876           |                            |                | Open Manhole<br>Open Manhole                 |                    |
| 1.011          | 17.591                       | 53.8        | S24        | 30.805                     | 27.900                     | 2.005          | Open Manhole                                 | 1800               |
| 7.000          | 54.222                       | 249.9       | S24        | 30.805                     | 28.425                     | 2.005          | Open Manhole                                 | 1800               |
| 1.012          | 33.812                       | 397.8       | S26        | 30.686                     | 27.815                     | 1.971          | Open Manhole                                 | 1800               |
| 8.000          | 32.323                       | 99.8        | S26        | 30.686                     | 28.388                     | 1.998          | Open Manhole                                 | 1800               |
| 1.014          | 17.073<br>10.000#<br>10.000# | 0.0         | F/C        | 30.200<br>30.300<br>29.114 | 27.773<br>27.600<br>27.500 | 2.400          | Open Manhole<br>Open Manhole<br>Open Manhole | 1200               |

# Free Flowing Outfall Details for Surface Network 1

| Out  | fall   | Outfall | C. Level | I. Level |          | Min   | D,L  | W    |
|------|--------|---------|----------|----------|----------|-------|------|------|
| Pipe | Number | Name    | (m)      | (m)      | I. Level |       | (mm) | (mm) |
|      |        |         |          |          |          | (m)   |      |      |
|      | 1.015  | S29     | 29.114   | 27.500   |          | 0.000 | 1200 | 0    |

| Stomor Ltd            |                |                   |  |  |  |  |
|-----------------------|----------------|-------------------|--|--|--|--|
| 32 Beehive Lane       | Wivenhoe       |                   |  |  |  |  |
| Welwyn Garden City    |                | The second second |  |  |  |  |
| Herts AL7 4BQ         |                | Micro Micro       |  |  |  |  |
| Date 12/03/2021 11:48 | Designed by JN | Drainage          |  |  |  |  |
| File ST-2981-C.mdx    | Checked by     | Dialilade         |  |  |  |  |
| Micro Drainage        | Network 2019.1 | ·                 |  |  |  |  |

# Simulation Criteria for Surface Network 1

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor \* 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

#### Synthetic Rainfall Details

| Rainfall Model        | FSR               | Profile Type          | Summer |
|-----------------------|-------------------|-----------------------|--------|
| Return Period (years) | 100               | Cv (Summer)           | 0.750  |
| Region                | England and Wales | Cv (Winter)           | 0.840  |
| M5-60 (mm)            | 19.000            | Storm Duration (mins) | 30     |
| Ratio R               | 0.400             |                       |        |

| Stomor Ltd            | Page 5         |          |
|-----------------------|----------------|----------|
| 32 Beehive Lane       | Wivenhoe       |          |
| Welwyn Garden City    |                |          |
| Herts AL7 4BQ         |                | Micro    |
| Date 12/03/2021 11:48 | Designed by JN |          |
| File ST-2981-C.mdx    | Checked by     | Drainage |
| Micro Drainage        | Network 2019.1 | ,        |

# Online Controls for Surface Network 1

### Hydro-Brake® Optimum Manhole: F/C, DS/PN: 1.015, Volume (m³): 3.7

Unit Reference MD-SHE-0156-1500-2300-1500 Design Head (m) 2.300 Design Flow (1/s) 15.0 Calculated Flush-Flo™ Objective Minimise upstream storage Application Surface Sump Available Diameter (mm) 156 27.600 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1800

| Control Points            | Head (m) | Flow (1/s) | Control Points            | Head (m) | Flow (1/s) |
|---------------------------|----------|------------|---------------------------|----------|------------|
| Design Point (Calculated) | 2.300    | 15.0       | Kick-Flo®                 | 1.393    | 11.8       |
| Flush-Flo™                | 0.683    | 15.0       | Mean Flow over Head Range | _        | 13.1       |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (1/s) |
|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
|           |            |           |            |           |            |           |            |           |            |
| 0.100     | 5.6        | 0.800     | 14.9       | 2.000     | 14.0       | 4.000     | 19.5       | 7.000     | 25.5       |
| 0.200     | 11.9       | 1.000     | 14.5       | 2.200     | 14.7       | 4.500     | 20.6       | 7.500     | 26.4       |
| 0.300     | 13.4       | 1.200     | 13.6       | 2.400     | 15.3       | 5.000     | 21.7       | 8.000     | 27.2       |
| 0.400     | 14.3       | 1.400     | 11.9       | 2.600     | 15.9       | 5.500     | 22.7       | 8.500     | 28.0       |
| 0.500     | 14.7       | 1.600     | 12.6       | 3.000     | 17.0       | 6.000     | 23.7       | 9.000     | 28.8       |
| 0.600     | 14.9       | 1.800     | 13.3       | 3.500     | 18.3       | 6.500     | 24.6       | 9.500     | 29.6       |

| Stomor Ltd            | Page 6         |          |
|-----------------------|----------------|----------|
| 32 Beehive Lane       | Wivenhoe       |          |
| Welwyn Garden City    |                |          |
| Herts AL7 4BQ         |                | Micro    |
| Date 12/03/2021 11:48 | Designed by JN |          |
| File ST-2981-C.mdx    | Checked by     | Drainage |
| Micro Drainage        | Network 2019.1 | '        |

# Storage Structures for Surface Network 1

# Tank or Pond Manhole: Basin, DS/PN: 1.014

Invert Level (m) 27.600

| Depth (m) | Area (m²)      | Depth (m) | Area (m²)      | Depth (m) | Area (m²)        |
|-----------|----------------|-----------|----------------|-----------|------------------|
| 0.000     | 290.0<br>433.0 |           | 572.0<br>904.0 |           | 1095.0<br>1521.0 |

| Stomor Ltd            |                | Page 7   |
|-----------------------|----------------|----------|
| 32 Beehive Lane       | Wivenhoe       |          |
| Welwyn Garden City    |                |          |
| Herts AL7 4BQ         |                | Micro    |
| Date 12/03/2021 11:48 | Designed by JN | Drainage |
| File ST-2981-C.mdx    | Checked by     | prantage |
| Micro Drainage        | Network 2019.1 |          |

# $\frac{1 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface}{\text{Network } 1}$

## Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor \*  $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

#### Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.400 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 250.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

|       |       |          |        | Water  | Surcharged | Flooded |        |          | Maximum  | Pipe  |            |
|-------|-------|----------|--------|--------|------------|---------|--------|----------|----------|-------|------------|
|       | US/MH | Duration | US/CL  | Level  | Depth      | Volume  | Flow / | Maximum  | Velocity | Flow  |            |
| PN    | Name  | (mins)   | (m)    | (m)    | (m)        | (m³)    | Cap.   | Vol (m³) | (m/s)    | (1/s) | Status     |
| 1.000 | S1    | 15       | 31.880 | 30.147 | -0.203     | 0.000   | 0.23   | 0.105    | 0.9      | 17.2  | OK         |
| 2.000 | S2    | 15       | 31.800 | 30.008 | -0.192     | 0.000   | 0.28   | 0.117    | 0.8      | 16.9  | OK         |
| 1.001 | s3    | 15       | 31.800 | 29.755 | -0.385     | 0.000   | 0.16   | 0.249    | 1.0      | 47.6  | OK         |
| 3.000 | S4    | 15       | 31.858 | 30.366 | -0.234     | 0.000   | 0.11   | 0.069    | 1.5      | 17.0  | OK         |
| 1.002 | S5    | 15       | 31.744 | 29.579 | -0.330     | 0.000   | 0.29   | 1.473    | 1.1      | 77.0  | OK         |
| 1.003 | S6    | 15       | 31.764 | 29.502 | -0.290     | 0.000   | 0.41   | 1.654    | 1.0      | 90.9  | OK         |
| 1.004 | s7    | 15       | 31.731 | 29.447 | -0.288     | 0.000   | 0.42   | 1.267    | 1.1      | 103.9 | OK         |
| 1.005 | S8    | 15       | 31.590 | 29.268 | -0.362     | 0.000   | 0.32   | 1.240    | 1.1      | 114.7 | OK         |
| 1.006 | S9    | 15       | 31.222 | 29.167 | -0.334     | 0.000   | 0.41   | 2.986    | 1.1      | 126.9 | OK         |
| 4.000 | S10   | 15       | 30.868 | 29.600 | -0.200     | 0.000   | 0.24   | 0.108    | 0.8      | 16.7  | OK         |
| 4.001 | S11   | 15       | 31.039 | 29.405 | -0.267     | 0.000   | 0.18   | 0.198    | 1.2      | 31.3  | OK         |
| 1.007 | S12   | 15       | 31.209 | 29.073 | -0.363     | 0.000   | 0.43   | 1.535    | 1.0      | 164.3 | OK         |
| 1.008 | S13   | 15       | 31.264 | 29.013 | -0.362     | 0.000   | 0.44   | 2.493    | 1.1      | 175.3 | OK         |
| 1.009 | S14   | 15       | 31.272 | 28.915 | -0.390     | 0.000   | 0.46   | 2.807    | 0.9      | 185.1 | OK         |
| 5.000 | S16   | 15       | 31.336 | 29.996 | -0.204     | 0.000   | 0.22   | 0.103    | 0.9      | 17.0  | OK         |
| 5.001 | S17   | 15       | 31.203 | 29.905 | -0.185     | 0.000   | 0.31   | 0.285    | 1.3      | 31.4  | OK         |
| 5.002 | S18   | 15       | 30.912 | 29.530 | -0.276     | 0.000   | 0.16   | 0.169    | 2.0      | 45.8  | OK         |
| 1.010 | S19   | 15       | 31.222 | 28.698 | -0.576     | 0.000   | 0.28   | 1.086    | 1.1      | 230.3 | OK         |
| 6.000 | S20   | 15       | 30.570 | 29.176 | -0.194     | 0.000   | 0.26   | 0.114    | 0.8      | 16.7  | OK         |
| 6.001 | S21   | 15       | 30.844 | 29.043 | -0.242     | 0.000   | 0.27   | 0.315    | 0.9      | 31.3  | OK         |
| 1.011 | S22   | 15       | 30.876 | 28.504 | -0.623     | 0.000   | 0.21   | 6.141    | 1.6      | 265.9 | OK         |
| 7.000 | S23   | 15       | 30.276 | 28.737 | -0.280     | 0.000   | 0.15   | 0.159    | 0.8      | 17.1  | OK         |
| 1.012 | S24   | 240      | 30.805 | 28.417 | -0.383     | 0.000   | 0.10   | 4.954    | 0.6      | 78.7  | OK         |
| 8.000 | S25   | 15       | 30.511 | 28.794 | -0.218     | 0.000   | 0.16   | 0.088    | 1.1      | 16.7  | OK         |
| 1.013 | S26   | 240      | 30.686 | 28.406 | -0.309     | 0.000   | 0.14   | 12.985   | 0.6      | 81.4  | OK         |
| 1.014 | Basin | 240      | 30.200 | 28.400 | 0.500      | 0.000   | 0.56   | 343.663  | 0.3      | 16.8  | SURCHARGED |
| 1.015 | F/C   | 360      | 30.300 | 28.405 | 0.580      | 0.000   | 0.35   | 1.506    | 1.1      | 14.9  | SURCHARGED |

| Stomor Ltd            |                | Page 8   |
|-----------------------|----------------|----------|
| 32 Beehive Lane       | Wivenhoe       |          |
| Welwyn Garden City    |                |          |
| Herts AL7 4BQ         |                | Micro    |
| Date 12/03/2021 11:48 | Designed by JN | Drainage |
| File ST-2981-C.mdx    | Checked by     | prantage |
| Micro Drainage        | Network 2019.1 |          |

# 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

## Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor \*  $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

#### Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.400 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 250.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

| PN    | US/MH<br>Name | Duration (mins) | US/CL  | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) | Flow / | Maximum<br>Vol (m³) | Maximum<br>Velocity<br>(m/s) | Pipe<br>Flow<br>(1/s) | Status     |
|-------|---------------|-----------------|--------|-----------------------|----------------------------|---------------------------|--------|---------------------|------------------------------|-----------------------|------------|
|       |               |                 |        |                       |                            |                           |        |                     |                              |                       |            |
| 1.000 | S1            |                 | 31.880 |                       | -0.138                     | 0.000                     | 0.54   | 0.178               | 1.1                          | 40.3                  | OK         |
| 2.000 | S2            |                 | 31.800 |                       | -0.117                     | 0.000                     | 0.68   | 0.202               | 0.9                          | 41.6                  | OK         |
| 1.001 | s3            |                 | 31.800 |                       | -0.195                     | 0.000                     | 0.40   | 1.405               |                              | 119.6                 | OK         |
| 3.000 | S4            |                 |        |                       | -0.194                     | 0.000                     | 0.27   | 0.114               | 1.9                          | 41.7                  | OK         |
| 1.002 | S5            | 15              | 31.744 |                       | -0.025                     | 0.000                     | 0.70   | 8.701               |                              | 182.8                 | OK         |
| 1.003 | S6            | 15              | 31.764 |                       | 0.018                      | 0.000                     | 0.97   | 4.958               |                              |                       | SURCHARGED |
| 1.004 | s7            | 15              |        |                       | 0.022                      | 0.000                     | 1.00   | 3.592               | 1.3                          |                       | SURCHARGED |
| 1.005 | S8            | 15              | 31.590 |                       | 0.017                      | 0.000                     | 0.73   | 6.152               | 1.3                          |                       | SURCHARGED |
| 1.006 | S9            | 15              | 31.222 |                       | 0.042                      | 0.000                     | 0.90   | 9.486               |                              |                       | SURCHARGED |
| 4.000 | S10           | 15              | 30.868 | 29.668                | -0.132                     | 0.000                     | 0.58   | 0.185               | 1.0                          | 40.9                  | OK         |
| 4.001 | S11           | 15              | 31.039 | 29.502                | -0.170                     | 0.000                     | 0.49   | 0.629               | 1.5                          | 83.8                  | OK         |
| 1.007 | S12           | 15              | 31.209 | 29.438                | 0.002                      | 0.000                     | 0.95   | 6.747               | 1.2                          | 363.9                 | SURCHARGED |
| 1.008 | S13           | 15              | 31.264 | 29.376                | 0.001                      | 0.000                     | 0.97   | 6.822               | 1.3                          | 387.6                 | SURCHARGED |
| 1.009 | S14           | 360             | 31.272 | 29.305                | 0.000                      | 0.000                     | 0.20   | 8.295               | 0.7                          | 81.3                  | OK         |
| 5.000 | S16           | 15              | 31.336 | 30.059                | -0.141                     | 0.000                     | 0.54   | 0.175               | 1.1                          | 41.6                  | OK         |
| 5.001 | S17           | 15              | 31.203 | 30.006                | -0.084                     | 0.000                     | 0.84   | 0.800               | 1.6                          | 84.4                  | OK         |
| 5.002 | S18           | 15              | 30.912 | 29.607                | -0.199                     | 0.000                     | 0.44   | 0.402               | 2.6                          | 128.1                 | OK         |
| 1.010 | S19           | 360             | 31.222 | 29.259                | -0.015                     | 0.000                     | 0.12   | 6.747               | 0.8                          | 102.3                 | OK         |
| 6.000 | S20           | 15              | 30.570 | 29.249                | -0.121                     | 0.000                     | 0.65   | 0.197               | 1.0                          | 40.9                  | OK         |
| 6.001 | S21           | 480             | 30.844 | 29.180                | -0.105                     | 0.000                     | 0.08   | 1.101               | 0.6                          | 9.3                   | OK         |
| 1.011 | S22           | 480             | 30.876 | 29.180                | 0.053                      | 0.000                     | 0.07   | 41.142              | 1.2                          | 96.2                  | SURCHARGED |
| 7.000 | S23           | 480             | 30.276 | 29.179                | 0.162                      | 0.000                     | 0.04   | 0.940               | 0.6                          | 4.6                   | SURCHARGED |
| 1.012 | S24           | 480             | 30.805 | 29.179                | 0.379                      | 0.000                     | 0.14   | 19.092              | 0.5                          | 105.1                 | SURCHARGED |
| 8.000 | S25           | 480             | 30.511 | 29.178                | 0.166                      | 0.000                     | 0.05   | 0.521               | 0.8                          | 4.7                   | SURCHARGED |
| 1.013 | S26           | 480             | 30.686 | 29.178                | 0.463                      | 0.000                     | 0.20   | 25.999              | 0.5                          | 114.1                 | SURCHARGED |
| 1.014 | Basin         | 480             | 30.200 | 29.177                | 1.277                      | 0.000                     | 0.56   | 939.867             | 0.3                          | 16.9                  | SURCHARGED |
| 1.015 | F/C           | 480             | 30.300 | 29.187                | 1.362                      | 0.000                     | 0.35   | 2.390               | 1.1                          | 14.9                  | SURCHARGED |

| Stomor Ltd            | Page 9         |           |
|-----------------------|----------------|-----------|
| 32 Beehive Lane       | Wivenhoe       |           |
| Welwyn Garden City    |                |           |
| Herts AL7 4BQ         |                | Micro     |
| Date 12/03/2021 11:48 | Designed by JN | Drainage  |
| File ST-2981-C.mdx    | Checked by     | nigiriade |
| Micro Drainage        | Network 2019.1 | ·         |

# $\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface}{\underline{\text{Network 1}}}$

## Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor \*  $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

#### Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.400 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 250.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

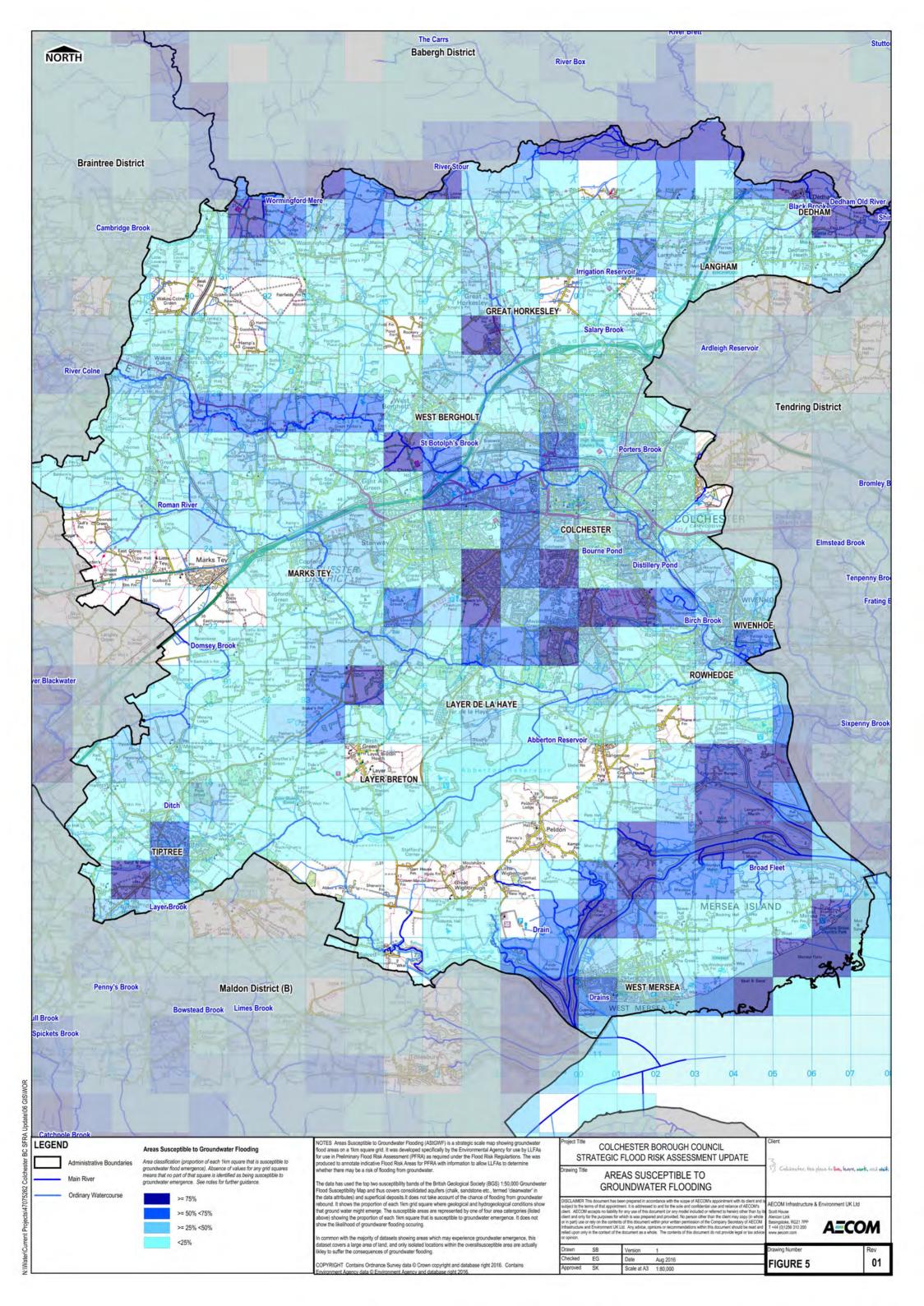
|       |       |          |        | Water  | Surcharged | Flooded |        |          | Maximum  | Pipe  |            |
|-------|-------|----------|--------|--------|------------|---------|--------|----------|----------|-------|------------|
|       | US/MH | Duration | US/CL  | Level  | Depth      | Volume  | Flow / | Maximum  | Velocity | Flow  |            |
| PN    | Name  | (mins)   | (m)    | (m)    | (m)        | (m³)    | Cap.   | Vol (m³) | (m/s)    | (1/s) | Status     |
| 1.000 | S1    | 15       | 31.880 | 31.596 | 1.246      | 0.000   | 0.76   | 1.742    | 1.2      | 56.5  | SURCHARGED |
| 2.000 | S2    | 15       | 31.800 | 31.504 | 1.304      | 0.000   | 0.91   | 1.808    | 1.0      | 55.8  | SURCHARGED |
| 1.001 | s3    | 15       | 31.800 | 31.412 | 1.272      | 0.000   | 0.53   | 7.902    | 1.3      | 158.9 | SURCHARGED |
| 3.000 | S4    | 15       | 31.858 | 31.506 | 0.906      | 0.000   | 0.44   | 1.358    | 2.1      | 69.0  | SURCHARGED |
| 1.002 | S5    | 15       | 31.744 | 31.312 | 1.403      | 0.000   | 1.01   | 15.151   | 1.2      | 265.3 | SURCHARGED |
| 1.003 | S6    | 15       | 31.764 | 31.204 | 1.412      | 0.000   | 1.42   | 7.718    | 1.5      | 312.9 | SURCHARGED |
| 1.004 | s7    | 15       | 31.731 | 31.048 | 1.313      | 0.000   | 1.45   | 6.032    | 1.7      | 361.3 | SURCHARGED |
| 1.005 | S8    | 15       | 31.590 | 30.821 | 1.191      | 0.000   | 1.14   | 8.502    | 1.5      | 409.1 | SURCHARGED |
| 1.006 | S9    | 15       | 31.222 | 30.635 | 1.134      | 0.000   | 1.47   | 11.773   | 1.6      | 460.5 | SURCHARGED |
| 4.000 | S10   | 15       | 30.868 | 30.631 | 0.831      | 0.000   | 0.87   | 1.273    | 1.1      | 60.7  | FLOOD RISK |
| 4.001 | S11   | 15       | 31.039 | 30.554 | 0.882      | 0.000   | 0.65   | 3.934    | 1.6      | 111.5 | SURCHARGED |
| 1.007 | S12   | 15       | 31.209 | 30.393 | 0.957      | 0.000   | 1.59   | 9.496    | 1.7      | 611.7 | SURCHARGED |
| 1.008 | S13   | 15       | 31.264 | 30.157 | 0.782      | 0.000   | 1.66   | 8.632    | 1.9      | 661.6 | SURCHARGED |
| 1.009 | S14   | 480      | 31.272 | 30.041 | 0.736      | 0.000   | 0.30   | 10.682   | 0.7      | 118.3 | SURCHARGED |
| 5.000 | S16   | 15       | 31.336 | 30.538 | 0.338      | 0.000   | 0.97   | 0.716    | 1.1      | 74.6  | SURCHARGED |
| 5.001 | S17   | 15       | 31.203 | 30.437 | 0.347      | 0.000   | 1.47   | 1.807    | 2.1      | 147.3 | SURCHARGED |
| 5.002 | S18   | 480      | 30.912 | 30.043 | 0.237      | 0.000   | 0.09   | 2.963    | 1.6      | 25.4  | SURCHARGED |
| 1.010 | S19   | 480      | 31.222 | 30.038 | 0.764      | 0.000   | 0.18   | 10.378   | 0.8      | 149.5 | SURCHARGED |
| 6.000 | S20   | 480      | 30.570 | 30.040 | 0.670      | 0.000   | 0.13   | 1.091    | 0.6      | 8.1   | SURCHARGED |
| 6.001 | S21   | 480      | 30.844 | 30.037 | 0.752      | 0.000   | 0.14   | 3.271    | 0.7      | 15.7  | SURCHARGED |
| 1.011 | S22   | 480      | 30.876 | 30.033 | 0.906      | 0.000   | 0.13   | 44.948   | 1.2      | 172.1 | SURCHARGED |
| 7.000 | S23   | 960      | 30.276 | 29.991 | 0.974      | 0.000   | 0.04   | 2.375    | 0.5      | 4.6   | SURCHARGED |
| 1.012 | S24   | 960      | 30.805 | 29.991 | 1.191      | 0.000   | 0.14   | 21.161   | 0.5      | 107.8 | SURCHARGED |
| 8.000 | S25   | 960      | 30.511 | 29.991 | 0.979      | 0.000   | 0.05   | 1.440    | 0.7      | 4.7   | SURCHARGED |
| 1.013 | S26   | 960      | 30.686 | 29.990 | 1.275      | 0.000   | 0.20   | 28.066   | 0.5      | 116.8 | SURCHARGED |
| 1.014 | Basin | 960      | 30.200 | 29.989 | 2.089      | 0.000   | 0.56   | 1953.561 | 0.3      | 16.9  | FLOOD RISK |
| 1.015 | F/C   | 960      | 30.300 | 29.996 | 2.171      | 0.000   | 0.35   | 3.305    | 1.1      | 15.2  | SURCHARGED |

# APPENDIX H



# Learn more about this area's flood risk

Select the type of flood risk information you're interested in. The map will then update.


Flood risk Extent of flooding Location wivenhoe Workings Extent of flooding from surface water <u>High</u> **Medium** Low Very low Location you selected

View the flood risk information for another location (/long-term-flood-risk/postcode)

This information meets the requirements of the EU Floods Directive 2007/60/EC

# APPENDIX I





# APPENDIX J



# Josh Newman

From: Planning Liaison <planningliaison@anglianwater.co.uk>

**Sent:** 19 June 2020 11:58 **To:** Josh Newman

Subject: RE: Land at Richard Avenue, Wivenhoe, Colchester

Follow Up Flag: Follow up Flag Status: Completed

Good morning Josh,

I hope you are well.

Anglian Water is able to confirm that we have no records of flooding in the vicinity that can be attributed to capacity limitations in the public sewerage system. It is possible that other flooding may have occurred that we do not have records of, other organisations such as the Local Authority, Internal Drainage Board or the Environment Agency may have records.

Kind regards, Charlotte



# **Planning Liaison**

Telephone: 0345 606 6087

**Anglian Water Services Limited** 

Thorpe Wood House, Thorpe Wood, Peterborough, Cambridgeshire, PE3 6WT

From: Josh Newman < j.newman@stomor.com>

Sent: 18 June 2020 12:46

**To:** Planning Liaison <planningliaison@anglianwater.co.uk> **Subject:** Land at Richard Avenue, Wivenhoe, Colchester

\*EXTERNAL MAIL\* - Please be aware this mail is from an external sender - THINK BEFORE YOU CLICK

Good afternoon,

I can confirm we have been commissioned to undertake a Flood Risk Assessment associated with the proposed development of Land at Richard Avenue, Wivenhoe, Colchester. Site details are as follows:

Land at Richard Avenue Wivenhoe Colchester CO7 9HY

Grid Reference: 604550, 223229

I would be grateful if you could forward on information regarding sewer flooding history for the area in the vicinity of the site. Please let me know if you require any further information.

Kind regards,

Josh Newman
TRAINEE ENGINEER

j.newman@stomor.com 01462 615433



Suite 2 | First Floor | Portmill House | Portmill Lane | Hitchin | Hertfordshire | SG5 1DJ - www.stomor.com

This email contains confidential information, solely for the person/organisation intended. If you received it in error, please contact the sender immediately. You may not copy, disclose or distribute this message to anyone and to do so is prohibited and may be unlawful. The contents of an attachment to this email may contain software viruses which could damage your computer system. While Stomor Ltd. has taken reasonable precaution to minimise the risk, we cannot accept liability for any damage which you sustain as a result of software viruses. You should carry out your own virus checks before opening any attachment.